
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

THESIS 

VALIDATION OF THE 
TIME STRIKE OPTIMIZATION MODEL 

THROUGH SIMULATION 

by 

John J. Kosina 

September, 1997 

ÖTK SpilLffif IMciSOTSD 3 

Thesis Advisor: 
Second Reader: 

Alan R. Washburn 
Arnold H. Buss 

Approved for public release; distribution is unlimited. 

19980206 032 



REPORT DOCUMENTATION PAGE Form Approved              1 
OMB No. 0704-0188        J 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,       1 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send         | 
comments regarding this burden estimate or any other aspect of this cofection of information, including suggestions for reducing this burden, to        | 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.                              | 

1. AGENCY USE ONLY (Leave blank) 2.  REPORT DATE 
September 1997 

3. REPORT TYPE AND DATES COVERED                J 
Master's Thesis                                                | 

4. TITLE AND SUBTITLE 
VALIDATION OF THE TIME STRIKE OPTIMIZATION MODEL THROUGH 

SIMULATION 

5. FUNDING NUMBERS                  j 

6. AUTHOR(S) 
Kosina, John J. 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

8. PERFORMING                             I 
ORGANIZATION REPORT              [ 
NUMBER                                          I 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING  1 
AGENCY REPORT NUMBER     J 

11. SUPPLEMENTARY NOTES                                                                                                                                                                              I 

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of    I 
Defense or the U.S. Government.                                                                                                                                               I 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE             i 

13. ABSTRACT (maximum 200 words) 
The TIME STRIKE optimization model was developed in 1995 for use by the cognizant US Air Force 

agencies to investigate requirements for conventional munitions and the feasibility of operational plans based on 
their availability and current budgets. The problem addressed here is: Is the output of TIME STRIKE accurate 
when compared to a simulation? This thesis develops a computer simulation, called SimStrike, which models all 
the same things TIME STRIKE does, using the same data, however with randomness used where TIME STRIKE 
uses expectations. It was found that TIME STRIKE and SimStrike produce similar results. 

14. SUBJECT TERMS 
Time Strike, Munitions, Optimization, Simulation, Linear Programming, USAF 

15. NUMBER OF 
PAGES 

84 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 
Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 
Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 
Unclassified 

20. LIMITATION OF 
ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 



11 



Approved for public release; distribution is unlimited 

VALIDATION OF THE TTME STRIKE OPTIMIZATION MODEL 
THROUGH SIMULATION 

John J. Kosina 
Lieutenant, United States Navy 

B.S.M.E., Wright State University, 1988 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN OPERATIONS RESEARCH 

from the 

NAVAL POSTGRADUATE SCHOOL 
September 1997 

Author: 

Approved by: 

\ / Alan-R. Washburn, Thesis Advisor 

^"-ArnoldH. Buss^Sejeendi^eader 

Richard E. Rosenthal, Chairman 
Department of Operations Research 

111 



IV 



ABSTRACT 

The TIME STRIKE optimization model was developed in 1995 for use by the 
cognizant US Air Force agencies to investigate requirements for conventional munitions 
and the feasibility of operational plans based on their availability and current budgets. 
The problem addressed here is: Is the output of TIME STRIKE accurate when compared 
to a simulation? This thesis develops a computer simulation, called SimStrike, which 
models all the same things TIME STRIKE does, using the same data, however with 
randomness used where TIME STRIKE uses expectations. It was found that TIME 
STRIKE and SimStrike produce similar results. 



VI 



TABLE OF CONTENTS 

I. INTRODUCTION 1 
A. OPTIMIZING VS. EVALUATIVE MODELS 1 
B. THE TIME STRIKE OPTIMIZATION MODEL 1 
C. AIM OF THIS THESIS 2 

n. SIMSTRKE DESCRIPTION 5 
A. COMPARISON OF TIME STRIKE AND SIMSTRKE 5 

1. Constraints on Sorties 6 
2. Distribution of Sorties 7 
3. Expected Kills Per Sortie (EKS) 8 
4. Attrition Per Sortie 8 
5. Kill Goals 8 
6. Time Periods and Planning Cycles 9 
7. Battle-Damage Assessment and Target Regeneration 10 
8. Calculation of the Objective Function Value 19 

B. SUMMARY OF COMPARISONS OF TIME STRIKE AND SIMSTRKE 19 
HI. RESULTS 21 

A. RESULTS 21 
B. SOURCES OF DIFFERENCE 23 

1. Period Transitions and Restrikes 23 
2. Target Rich Environment 24 
3. Proportioning of Sorties Over Time and Restrikes 26 

C. CONCLUSIONS 28 
IV FUTURE WORK 29 

A. WEATHER 29 
B. PROBABILITY DISTRIBUTION FOR RANDOM ROUNDING 29 

APPENDIX A. PROGRAM LISTING AND DIRECTIONS FOR USE 31 
APPENDLXB. SAMPLE OUTPUT 57 
LIST OF REFERENCES 69 
INITIAL DISTRIBUTION LIST 71 

Vll 



Vlll 



LIST OF FIGURES AND TABLES 

Figure 1. The four stages associated with sorties in each day of a SimStrike period 13 
Figure 2. SimStrike Objective Function Value Histogram for 1000 Replications 22 
Figure 3. Comparison of TIME STRIKE and SimStrike for a Target Rich Environment 25 

Table 1. Comparison Summary of TIME STRIKE and SimStrike 20 
Table 2. Sensitivity Analysis 24 
Table 3. Target Rich Environment Data for Figure 3 26 
Table 4. Example of Carry-Over Restrikes 27 

IX 





ACKNOWLEDGEMENTS 

I wish to acknowledge the help provided by the following people, without whose 
assistance this thesis would not have been possible. The first is my Thesis Advisor, 
Professor Alan Washburn, who provided the guiding hand needed to get me back on 
track when it was apparent sometimes that I was heading down the wrong avenues in the 
development of the simulation. The second is Maj. Kirk Yost, USAF, the author of 
TIME STRIKE, who always showed patience in answering the numerous questions I 
seemed to have about his model. 

XI 



I. INTRODUCTION 

A. OPTIMIZING VS. EVALUATIVE MODELS 

Models used in the field of Operations Research can be roughly divided into those 
that find an optimal decision for some problem (optimizing models), and those that 
merely evaluate a given decision (evaluative models). Since their ambitions are higher, 
optimization models generally are forced to make more abstractions and approximations 
in the data they use to achieve their results. These approximations may leave out much 
of the detail otherwise involved in the decision process being modeled, so one is led to 
ask the question: Are the results produced by a certain optimization model being studied 
accurate enough for the approximations used? 

This questions leads to the topic of verification of the optimization model. 
Verification can be accomplished through construction of an evaluative model that 
includes many more of the details left out of the optimization model. These details 
consist of refinement of the approximations used in the optimization model to more 
closely model the situation originally desired in the optimization model. The evaluative 
model can be used to test the optimal solution, results obtained and compared, and 
conclusions drawn. 

This thesis attempts to verify one particular optimizing model, the TIME STRIKE 
munitions optimization model, by constructing a parallel evaluative model called 
SimStrike. 

B. THE TIME STWKE OPTIMIZATION MODEL 

The linear program (LP) being evaluated by this thesis is the TIME STRIKE 
munitions optimization model (henceforth simply referred to as TIME STRIKE). TIME 
STRIKE was introduced in 1995 for use by various US Air Force agencies to develop 
requirements for conventional munitions, to refine operational plans based on the 
availability of different mixes of munitions, and to assess the effects of procuring 
different types and quantities of munitions [Ref. l:p. i]. It creates sortie allocations 
across time for a given strike scenario against enemy targets based on things such as the 
type of aircraft, weapons types and loadouts, flight profiles possible, attrition and sortie 
rates, the length of time periods, target regeneration and battle damage assessment 



(BDA), weather, budget, etc. Depending on the desires of the user, TIME STRIKE has 
available five objective functions [Ref. l:p. 23], but the most useful of these, for the 
purposes of this thesis, is the one maximizing the weighted sum of target-value-destroyed 
(TVD) and time-scripted goals because it gives us a quantitative idea of the "reward" 
gained for the number of targets killed. 

Since TIME STRIKE is a large LP, it is forced to make some approximations in 
order to permit it to stay linear. The major approximations made are permitting non- 
integer values for the number of sorties flown and expected kills per sortie (EKS), and 
using expected values in the place of random quantities. These approximations are 
necessary since TIME STRIKE must remain linear, but they carry with them the potential 

for error. Consider this simple example: Suppose there were 10 targets to be struck and 

there were 6 sorties available, each with an EKS of 1.8. TIME STRIKE would simply 

say you need (10 / 1.8 =) 5.6 sorties out of the 6 available to accomplish the mission, 
assigning the remaining 0.4 sorties to some other target. On the other hand, suppose 
instead that we force kills and sorties flown to be integer valued and random, as they are 
in real life. Using the notation "[no. kills by sortie 1, no. kills by sortie 2,...,no. kills by 
sortie 6]" to represent how many kills each sortie makes against the 10 targets, on any 
particular replication we may get the following results: [2, 2, 2, 2, 2, 0], which is a case 
where the first 5 sorties kill all 10 targets, exactly, so the 6th sortie need do nothing; [1,2, 
2, 2, 2, 2], which is a case where all 10 targets are killed with the number of kills 
achieved by the first 5 sorties plus 1 of the 2 kills achieved by the 6th sortie, but now there 
is 1 kill left over at the end, which could be applied to another target if there were more; 
[1,2, 1, 2, 2, 2], which is another case in which all 10 targets are killed, exactly, but this 
time needing the total kills achieved over all 6 sorties in order to do it, instead of just the 
first 5 sorties as in the first case examined; or, if the sorties are particularly unlucky, we 
could get something like [1, 1, 1, 2, 1, 1], a case in which not all of the 10 targets could 
be killed using 6 sorties with the EKS given! But the interesting thing, and also the cause 
of concern, is that TIME STRIKE does not have to face any of these problems which 
may occur in real life. 

C.       AIM OF THIS THESIS 

This thesis develops an independent Monte Carlo simulation, called SimStrike, to 
test the TIME STRIKE solution.   SimStrike essentially re-flies the sorties output by 



TIME STRIKE, but applying probabilities where TIME STRIKE uses expectations, and 
randomly rounding the non-integer numbers of sorties output by TIME STRIKE to make 

them integer. It accounts for all the same things TIME STRIKE does, i.e., weather, 
BDA, kill goals, etc., and generates the mean TVD for a large number of replications 
along with the standard deviation. The objective is to determine whether the output of 
SimStrike equals the output of TIME STRIKE, on the average. The actual SimStrike 
program listing and directions for use can be found in Appendix A, with a sample output 
provided in Appendix B. 

The remainder of this thesis is organized as follows: Chapter II provides a point 

by point comparison of the major features modeled in TIME STRIKE and SimStrike, 

along with a concise summary of these comparisons tabulated at the end of the chapter. 
Chapter HI discusses the results of the thesis obtained and conclusions drawn, and also 
discusses some sources of difference between TIME STRIKE and SimStrike. Chapter IV 
discusses two areas of future work which might be considered for possible future 
revisions to SimStrike. 





H. SIMSTRIKE DESCRIPTION 

A.       COMPARISON OF TIME STRIKE AND SIMSTRIKE 

SimStrike is a simulation model developed to evaluate the TIME STRIKE 
optimization model. SimStrike re-flies the sorties output by TIME STRIKE, and, using 
the same attrition and expected kills per sortie (EKS) values for each engagement in each 
period, applies probabilities rather than expectations to achieve its results. To achieve 
accurate results, all the same things are modeled which affect the life of a sortie as in 

TIME STRIKE. 
Much of the complication in TIME STRIKE arises from the need to maintain the 

linearity of the optimization model. As a result, some of the quantities which represent 
physical entities, such as sorties, aircraft, and targets, are allowed to assume non-integer 
(also continuous) values, rather than being restricted to integer values, as they should be 
in real life, to represent unit quantities, e.g., 1 sortie, 1 aircraft, and 1 target vice 0.5 

sorties, 0.6 aircraft, and 1.3 targets. 
For the reader not familiar with TIME STRIKE, some explanations of terms used 

is in order first: 
A period is a fundamental unit of time in TIME STRIKE. In TIME STRIKE, the 

entire time over which the model is run is divided into periods or user-selectable lengths, 
with each of these periods consisting of the same number of fixed-length planning cycles 
[Ref. l:p. 8]. Planning cycles are more generally referred to as days, the two terms being 
interchangeable in meaning. Many variables and data items used in TIME STRIKE are 
subscripted by period, but not by day. In this thesis, the terms campaign or timed strike 

are also used to represent an entire run of the TIME STRIKE model over time. 
Once TIME STRIKE sorts through the user-provided data, sorties are assigned by 

TIME STRIKE to fly engagements against targets [Ref. l:p. 1], an engagement being the 
term applied to an encounter between a single sortie and its assigned target(s). A sortie is 
an aircraft taking off, flying strikes against one or more targets, making kills against them 
or perhaps being killed itself, then returning to land if not attrited. Targets are, to put it 
simply, the enemy. Target types refer to a group of targets which are all the same, i.e., 
all anti-aircraft guns, all tanks, all transport vehicles, etc. Target classes refer to a group 
of target types which all have the same kill goals, i.e., the same amount expected to be 
dead or in repair at a certain point in time during the campaign. 



Battle-damage assessment (BDA) is a term used to represent what is thought to be 
the results of a previous day's strikes. If BDA is perfect, every target killed is known to 
be either dead forever, i.e., no chance of being repaired or coming back to life, or 

undergoing regeneration, i.e., being repaired. If BDA is less than perfect, in addition to 
knowing about dead targets as a result of being killed by sorties, one or more of these 
dead targets may be thought to be still alive, in which case a restrike sortie (henceforth 
simply referred to as a restrike) is assigned to be flown against it the next day. When a 
dead target is misclassified as still being alive, the term mis-BDA is used to apply to this 
situation. The possibility that live targets might be thought dead is modeled in neither 
TIME STRIKE or SimStrike. 

1.        Constraints on Sorties 

Before TIME STRIKE can assign sorties to strikes against targets, it must sort 
through the user-provided data to find valid combinations of aircraft, weapons, weapons 
loadouts, delivery tactics (or profiles), time periods, weather states, and target types [Ref. 
l:p. 1]. The number of available sorties is a function of the sortie rate, the attrition rate, 
and the length of the time period [Ref. 1: p. 54]. The sorties are then further constrained 
by the assigned missions which must be performed each period. 

Because TIME STRIKE is an LP, it assumes perfect information with regards to 
restrikes, so it knows from the start exactly how many sorties it must place in each day of 
each period in order to carry out the restrikes. Sorties are proportioned over each day of 
each period to exactly accomplish the restrike missions with no excess left over. Herein 
lies a deviation from reality. In real life, it is not physically possible to assign 1.2 sorties, 
for example, to a restrike mission against some mis-BDA'd target. How does one come 
up with 0.2 sorties as a mission planner? TIME STRIKE allows this, however. 

There is a similar problem for targets. Since target regeneration and kills are 

being optimized in TIME STRIKE to achieve the maximum possible TVD, targets may 
be proportioned as non-integer quantities with non-integer EKS to allow a non-integer 
number of sorties to kill every last one of the targets. The question which arises here is: 
How can TIME STRIKE'S advice be taken? Or another way of stating the question: Can 
we be assured of the accuracy of its results given this obvious deviation from reality? 

SimStrike handles this aspect a little differently than TIME STRIKE. The total 
number of sorties an aircraft type actually flies in SimStrike is either the total flown by 



the same aircraft in TIME STRIKE, which is the maximum possible it could fly in the 
period, or some lesser value which could be as a result of losing the maximum number of 

aircraft allowed for the aircraft type in the period, or achieving the kill goal for the target 
type in the period, or simply killing the remainder of the targets. However, since 
SimStrike works exclusively with integers for physical entities, i.e., sorties, targets, and 
aircraft, and therefore also with EKS, target kills are tallied as integers, or whole objects 
of whatever type the targets are, which is the case in reality. So when an aircraft kills a 

target, it does not kill a portion of it, it kills the whole target. Likewise, when sorties are 
flown, they are flown as whole entities, not fractions of sorties. 

The restrictions placed on the flying of sorties in SimStrike are all the same major 
restrictions placed on sorties by TIME STRIKE. 

2.        Distribution of Sorties 

The number of sorties flown by any aircraft against any target by TIME STRIKE 
in any period is uniformly distributed over the period, proportioning a certain number for 
each day of the period to account for all the actions which must be performed, i.e., 
restrikes, strikes against live targets, target regeneration, aircraft attrition, and weather 
aborts. The smallest time unit of resolution for sorties is by period. Also, aircraft do not 
really exist in TIME STRIKE, but rather aircraft sorties. "Aircraft" is merely a term used 
to represent a category for which losses are counted while the LP optimizes under the 
constraint that there is a cap on how many aircraft of each type can be lost, which is 
cumulative over time. 

SimStrike handles this differently and comes closer to reality on the issue of 
sorties and aircraft. SimStrike treats aircraft as actually existing and important entities, 
separate from the number of sorties they actually fly. Each aircraft is given individual 
attention as it flies its sorties. SimStrike still distributes sorties uniformly over each 
period as TIME STRIKE does, but the main difference is that once the number of sorties 
is distributed uniformly over the period in the simulation, this value is used to produce 
how many sorties per day an aircraft could possibly fly, i.e., the maximum available for 
the day for the aircraft type. But then SimStrike rounds this non-integer valued quantity 
randomly to an integer value, e.g., 2.3 sorties have a 70 percent chance of being 2 and a 
30 percent chance of being 3 sorties. Over a large number of replications of SimStrike, 
we expect this random rounding to average to the number TIME STRIKE flies. 



3. Expected Kills Per Sortie (EKS) 

EKS is input data to TIME STRIKE, subscripted by aircraft type to which the 
sortie belongs, weapon, target, weapons loadout, weapons delivery profile, and time 
period. EKS can be greater than 1 for a sortie with multiple weapons, and need not be an 
integer. To describe the problem which exists with this in TIME STRIKE, we go back to 
the simple example mentioned in Chapter I. If EKS is 1.8, and there are 10 targets with 6 
sorties available to fly strikes against them, TIME STRIKE will allow (10 / 1.8 =) 5.6 
sorties to fly and exactly kill the 10 targets. In reality, it is not possible to proportion 
physical entities such as targets and sorties in this manner. 

EKS is also input data to SimStrike, but SimStrike rounds EKS values randomly, 

as it does sorties, to make them integer. If an aircraft is not attrited and does not 

experience an in-flight weather abort, it is expected to make kills against any remaining 
live targets based on its EKS in SimStrike. Since sorties, targets, and target kills are 
integer valued, an integer number of kills is applied to an integer number of targets. 

4. Attrition Per Sortie 

TIME STRIKE treats attrition as a non-integer valued expectation of aircraft 
losses over time and so proportions a certain number of these losses over each period (see 
Ref. 1 for details). The problem here is that aircraft, like targets, are physical entities in 
real life. Either the whole aircraft must be destroyed, or none of it. 

SimStrike maintains this integrality of attrition. Before an aircraft sortie has a 
chance to do anything else in SimStrike, whether it be restrikes or regular strikes against 
live targets, it has a chance to be attrited based on this sortie's attrition value. If attrited, 
it does not get a chance to kill any targets, i.e., no "kamikaze" capability, and loses the 
remainder of its sorties for the day. SimStrike then proceeds to the next aircraft in the 
loop, or the next day if this was the last aircraft to fly. Other aircraft must pick up the 
lost aircraft's mission requirements, as would be the case in reality. If an aircraft is 
attrited, the total number of aircraft of this particular aircraft type is decremented by 1. 

5. Kill Goals 

The chosen objective function is based on time-scripted kill goals for each of the 
target classes present.   These kill goals in TIME STRIKE are cumulative over time so 



that in at least the last time period of a campaign this value is 1.0. A kill goal of 1.0 

translates into all the targets originally present in the beginning (start of period 1) of this 
particular target type are expected to be dead or in repair (a target must be struck and 
killed before it has a chance to be in repair) by the end of the period of the campaign in 
which the kill goal became 1.0. Aircraft in any period can kill up to the kill goal, but not 
over the goal, with anything killed which was less than the goal being charged as a 
penalty against any TVD reward gained so far. 

This aspect of TIME STRIKE is modeled exactly the same in SimStrike, with the 
only difference being that the actual calculation in SimStrike of the proportion killed, 
found from the number of targets dead or in repair divided by the total number present at 

the very start, has a numerator and denominator which are both integer. This presents the 
possibility of some instances arising where SimStrike cannot exactly meet kill goals in 
some periods. For example, if the kill goal for one period is 0.5, and for the next period 
it is 0.75, and say there are 3 targets, the most kills SimStrike can hope to achieve in the 
first period is 1 out of the 3 targets, which is approximately 0.33 proportion killed and 
under the goal of 0.5. If it killed 2, this would create a proportion of approximately 0.67, 
which is over the goal and so not allowed. Therefore, to make the 2nd kill, SimStrike 
would force the sorties to wait until the next period when the kill goal is 0.75, and the 3rd 

kill would have to wait until a period in which the goal rises to 1.0. 

6.        Time Periods and Planning Cycles 

The number of periods and days per period are input data to TIME STRIKE. 
TIME STRIKE places the required number of sorties into each of these days, or planning 
cycles, with the expectation of accomplishing everything planned for that day, i.e., 
restrikes and regular strikes against live targets. 

The problem is that in reality, a sortie may not be able to accomplish the mission 
is was assigned to perform. Whether because of nature or pure bad luck, the sortie might 
experience an in-flight weather abort, not kill as many targets as thought, or perhaps 
more, or suffer attrition. The randomness of nature is not modeled in TIME STRIKE 
when it comes to sorties. Everything planned may not get accomplished in a day, with 
the result that tomorrow's sorties may have to pick up some of today's mission 
objectives. 



The number of periods and days per period are also input to SimStrike. The file 
of solution variables generated by TIME STRIKE after each run of the model, from 
which SimStrike will directly read data for its corresponding run, generates a line of data 
for each engagement run by each aircraft type flying sorties against a particular target 
type. So, for example, if aircraft type 2 flies sorties against target type 5 once in each of 
five periods, there will be a total of five lines of data for this scenario, one for each 
engagement run in each period. The file is organized by period and then by aircraft type 
in each period. This file is in spreadsheet format and is called "TSVTST.CSV", and is 
placed in the TIME STRIKE "RESULTS" directory after each run of the LP. 

Each line of data in this output file will contain the total number of sorties flown 

over the whole period for the engagement run. Once the number of sorties per day is 

determined by SimStrike, it then simply steps through the days in the period. In each 
day, each surviving aircraft gets to fly sorties at its sortie rate against the targets of the 
target type, first against restrikes, and then until the maximum possible number of sorties 
is flown, the maximum allowed amount of aircraft are lost, all the targets are dead, or the 
kill goal is reached. SimStrike essentially uses nested loops here to accomplish this with 
test conditions for premature exit. This way SimStrike can model reality as close as 
possible by exiting a loop before normal completion when necessary because the 
conditions for exit exist. There is also a varying condition for the start of the aircraft 
loop for each day, based on how many aircraft of the aircraft type have been lost, which 
is continuously updated. 

The important aspect modeled by SimStrike here is that the randomness of nature 
does exist and must be accounted for. While SimStrike reflies TIME STRIKE'S sorties, 
the result may not be the same. For example, the same number of sorties required to 
accomplish restrikes on one day, may not be the number SimStrike uses due to possibly 
having to account for mission objectives which were not accomplished by the sorties on a 
previous day, or fewer sorties may be needed for the restrikes simply because they were 
luckier and conducted more kills per sortie. In summary, the randomness of reality and 
changing mission requirements is modeled in SimStrike. 

7.        Battle-Damage Assessment and Target Regeneration 

As part of the target data input to TIME STRIKE for each target type, there are 
probability expectations associated with correct BDA and repair proportions for killed 

10 



targets, the repair proportions having to do with target regeneration. These are dealt with 
as proportions by TIME STRIKE when determining how many targets will be restrikes 
and how many will be in repair in each day of each period, separate from the other 
category which is possible, namely targets which are killed and become dead forever. 
All targets are in one of these three states throughout a run of TIME STRIKE: a restrike 
(mis-BDA'd), in repair, or dead forever. For a more detailed explanation of the precise 

determining equations associated with placing the targets into these categories, the 
interested reader is referred to Appendix A of Ref. 1. 

The problem with this classification method used by TIME STRIKE is that the 
same proportion of targets struck and killed on any previous day of a period will get into 

one of the three categories mentioned above on a current or future day every time. One 
therefore knows with certainty that for a certain number killed today, what the proportion 
of targets are that must be restruck tomorrow, or what future regeneration will be. Again, 
the randomness of reality is not present here in TIME STRIKE. 

The same data for BDA and target repair/regeneration are used as probabilities 
within SimStrike and are applied across essentially four stages, or phases, which must be 
accomplished, or at least checked to see if the conditions are right for accomplishment, 
each day of the campaign. These four stages are: (1) Regeneration, executed once each 
day, which represents the probability of targets killed in previous days of regenerating on 
the current day; (2) Restrikes, executed once each day, but potentially by more than one 
aircraft and possibly many sorties, depending upon how many restrikes there are, until all 
the restrikes are complete or all the day's are sorties flown against them; (3) Regular 
strikes against actual live targets based upon each sorties' EKS value; and (4) 
Redistribution of kills made by the regular strike phase based on BDA When actions 
against targets are kept track of in this manner, the same categories possible for targets in 
TIME STRIKE are also modeled in SimStrike. The major difference, however, is that 
the same proportion of killed targets will not be placed into the same category each time. 
Instead, the randomness of reality is accounted for in SimStrike, and it is only possible, 

based on probability, for a killed target to evolve in a certain way throughout any 
particular simulation run, which will not be the same way every time SimStrike is run. 

For purposes of the discussion of these stages in the subsections which follow, we 
will refer often to Figure 1 below, which is an example of progressing through these 
stages with 40 targets of a particular target type, with the starting condition as shown for 
each of the categories, and the probabilities of following any path as indicated on the 

11 



arrows. The notation "Pc {2}" means, for example, that with probability Pc, every target 
in the category at the tail of the arrow will move independently to the category at the 
head of the arrow, and in this case 2 targets met the conditions for movement on the 
arrow; when just a number in brackets is present, with no associated probability listed 
next to it, e.g., "{3}", this means that all targets in the category at the tail move to the 
category at the head of the arrow. 

a.        Target Categories 

The six target categories shown in Figure 1, which are also what the 

variable names are called in SimStrike, are defined below: 

(1) LiveN Targets. LiveN targets are the number of live targets 

that are not restrikeable. These represent all the actual live targets, recognizable as alive 

by the aircraft flying sorties against them. At the start of a replication of a SimStrike run, 

this variable is initialized to the total number of targets of the target types present as read 

in from the data input file. 

(2) DeadN Targets. DeadN targets are the number of dead 

targets that are not restrikeable. These are targets which are dead forever, i.e., will not 

regenerate or be subject to BDA. Once a target gets into this category, it stays there 

throughout the remainder of the SimStrike replication run. 

(3) RegenN Targets. RegenN targets are the number of 

repairable targets that have previously been killed but placed into repair, and are not 

restrikeable. 

12 



...Start Day 

LIVEN 
Starting 20 
Condition 

DEADN     REGENN      LIVER       DEADR     REGENR 
10 0 

Regen 

...Sorties Flown 
Restrike 22 

{3} kills by sorties flown 

14 0 0 
... Sorties Flown  ,, 
Regular 19 
Strike 

Now have 37 targets with 3 kills which must be redistributed 

Redistr. 19 15 4 0 1 
... End Day ■♦ Now go to next day and start process over again... 

Figure 1 - The four stages associated with sorties in each day of a SimStrike period. 

13 



(4) LiveR Targets. LiveR targets are the number of live targets 

that are restrikeable. This category represents the number of targets which have just 

come out of repair in the planning cycle but may be restruck and returned to repair 

(become a RegenN target), or become dead forever (a DeadN target). 

(5) DeadR Targets. DeadR targets are the number of dead targets 

that are restrikeable. These are the targets that were actually killed in a previous 

planning cycle but were not repairable, i.e., dead forever, but were mis-BDA'd and are 

believed to be still alive. The only possibility for these targets are to become dead 

forever (DeadN) when restruck. 

(6) RegenR Targets. RegenR targets are the number of 

repairable targets that are restrikeable. These targets may regenerate and become a 

LiveR target, or remain as a RegenR target through the regeneration phase, and then any 

remaining RegenR targets may become RegenN or DeadN targets during the restrike 

phase. 

b.        Comparison ofSimStrike Target Categories with TIME STRIKE 

TIME STRIKE does not explicitly use the target categories as shown in 
Figure 1 and described above, but allows for each of the same six possibilities for the 
state of a target at any given time through the BDA equations it uses to calculate the 
proportion of targets existing in each of the states over time (see Appendix A of Ref. 1). 
These six categories in SimStrike, however, along with the associated probabilities 
shown on the arrows in Figure 1, and defined below, model the same aspects of the BDA 
equations used in TIME STRIKE, but probabilistically. 

(1) Probability a target regenerates in the next planning cycle, 

Pc   This probability is associated only with the RegenN and RegenR categories of 

targets in SimStrike and is calculated from, Pc = 1 - e"'; Repair Time, where "Repair Time" 

14 



is input data for both TIME STRIKE and SimStrike representing the amount of time in 

days required for repair of a killed target of a particular target type. The probability NPc 

is merely the quantity (1 - Pc). 

During the regeneration phase at the start of each day, this is the 

probability used to determine how targets in the RegenN and RegenR categories will be 

distributed as shown by the arrows in Figure 1. 

(2) Probability a target is repairable after a strike, Pr. This 

probability is used in two of the four phases which sorties experience each day, the 

restrike and redistribution of kills phases. The most obvious application is within the 

redistribution of kills phase where, after the BDA of the targets just killed has been 

determined, for each of the groups of good and mis-BDA'd targets, this probability is 

used to determine which ones will go into a regeneration, or repair category, and which 

will go into a dead category. 

The other application, which is not so obvious but still modeled 

within TIME STRIKE, is in the restrike phase. If the category chosen from which the 

restrikes will come, which is randomly decided in SimStrike, is from the DeadR 

category, we do not have to worry about this probability, or any probability for that 

matter because these targets will, with probability 1.0, become dead forever, or DeadN, 

when they are restruck. However, if the category chosen from which restrikes will come 

is either LiveR or RegenR, the probability Pr applies. 

Pr is set equal to the repair proportion read in for each target type, 

which is data to both TIME STRIKE and SimStrike. When restrikes are chosen from the 

LiveR or RegenR category, the restruck targets are distributed as shown in Figure 1 for 

the probability Pr. NPr is merely the quantity (1 - NPr). 

15 



(3) Probability of correct BDA for a target, B. This probability 

only exists in the decision process within the redistribution of kills phase. It is simply 

used to decide which of the targets just killed in the regular strike phase will have correct 

BDA, and which will be mis-BDA'd (NB = 1 - B), i.e., thought to be still alive, and must 

therefore be restruck the next day, even though they were actually killed. Of these two 

groups, it is further decided whether they will also become dead or in repair as shown in 

Figure 1. 

c.        Description of the Four Stages associated with Sorties 

"Stages", and "Phases", are identical in Figure 1. These stages are passed 

through in the same order every day of a SimStrike run: (1) Regeneration, (2) Restrike, 
(3) Regular Strike, (4) Redistribution of Kills. 

It is important to remember that any numbers in "{•}" in Figure 1 
represent the number of targets moving along that arrow as a result of execution of that 
stage. The arrows point to where the targets are moving, and Figure 1 is only an example 
of what may happen in one day for a case where there are 40 targets to start with. Also, 
throughout a SimStrike run, it is always true that (LiveN + DeadN + RegenN + LiveR + 
DeadR + RegenR = Total number of targets starting the SimStrike run). In the example 
in Figure 1, this total would always be 40. 

The following is a description of what happens in each of these stages: 

(1) Regeneration Stage. This stage in SimStrike is within the 

days loop but outside of the aircraft loop so it is only executed once per day. This stage 

is executed independent of aircraft and their sorties, only operating on any targets in the 

RegenN or RegenR categories. As shown in Figure 1, this stage marks the beginning of a 

new day and represents the first thing which must be done, or decided by SimStrike for a 

new day, the initial conditions of which are the results of the previous day's actions. 

This is meant to model the same lag in detection of regenerated targets by one planning 

cycle that TIME STRIKE does, preventing it from acting on new information until the 

next day [Ref. l:p. 11]. The number of targets in the RegenN category that move to the 

16 



LiveN category is determined from a Binomial(RegenN,Pc) probability (see Ref. 2 or any 

probability and statistics textbook for a discussion of Binomial probabilities), with the 

remainder left in the RegenN category. Likewise, the number in the RegenR category 

which will move to the LiveR category is determined from a Binomial(RegenR,Pc) 

probability, with the remainder left in the RegenR category. 

(2) Restrike Stage. This and the remainder of the stages are 

within the aircraft loop because although they are only executed once per day, some or 

all of the aircraft of the aircraft type involved in the strike may fly sorties against the 

target type. Aircraft flying sorties against restrikes are still subject to attrition and in- 

flight weather aborts just as they are for regular strikes against live targets. As with 

regular strikes, if an aircraft is not attrited and does not experience an in-flight weather 

abort, it is expected to make "kills" against these restrikes. All restrikes for the target 

type must be done before any aircraft of any type is allowed to fly sorties against actual 

live targets of the target type, just as is done in TIME STRIKE. 

Restrikes are accumulated from the Regular Strike phase of the 

previous day, or potentially carried over from more than one day ago. The latter case 

would mean all the aircraft fly their sorties against restrikes but cannot quite finish them 

all off and so do not proceed to the regular strike stage, in which case restrikes may 

accumulate for more than one day. 

When sorties are making restrikes, there are three categories from 

which the accounting for the "kills" against them can come: LiveR, DeadR, or RegenR. 

SimStrike assumes each restrike is against a target randomly chosen from the total of all 

these categories. Binomial(categ0ry.Pr) probabilities apply to the distribution of kills for 

the LiveR and RegenR categories, with the targets in the DeadR category always going to 

the DeadN category when they are struck, as shown in Figure 1. 

17 



Aircraft will continue to fly sorties against the target type's 

restrikes until all are restruck (LiveR, DeadR, and RegenR all equal to zero), the 

maximum number of sorties possible are flown, or the maximum allowed amount of 

aircraft are lost due to attrition. The exit conditions of the restrike stage will then 

contribute to the initial conditions of the regular strike stage. 

(3) Regular Strike Stage. This stage involves only those targets 

in the LiveN category. When restrikes are complete, and if there are aircraft sorties 

remaining to be flown, then, if these aircraft are not attrited and do not experience an in- 

flight weather abort, they are expected to make kills against actual live targets based on 

their EKS values. When the aircraft gets to this point within this stage, there are no 

longer any probabilities associated with the outcome of the kills it will make, as shown in 

Figure 1, with the exception of the random rounding of the sortie's EKS value to make it 

integer. 

The number of kills this sortie will make is calculated and then 

program flow immediately passes to the redistribution stage to distribute these kills 

amongst the possible categories as shown in Figure 1. 

(4) Redistribution of Kills Stage. The kills are distributed as 

they are made amongst the possible categories to which they can go based on the 

probabilities B, NB, Pr, and NPr as shown in Figure 1. Thus, the redistribution stage 

actually occurs successively right after the regular strike stage for each sortie, but a 

boolean condition prevents the restrike stage from being executed more than once per 

day, even though it is within the aircraft loop. 

When the maximum number of sorties have been flown, the 

maximum number of aircraft has been lost, all the targets have been killed, or the kill 

goal has been achieved, the current day ends. 

18 



8.        Calculation of the Objective Function Value 

In TIME STRIKE, two general quantities are calculated to be used in the overall 
objective function value calculation: the TVD reward gained, and the penalties for not 
meeting the time-scripted kill goals in each period, if any [Ref. l:p. 24], TIME STRIKE 
takes credit in each period for the target value of each target for the current period, times 
the total number of each target currently dead or in repair. Penalties against TVD gained 
are calculated from a set of known kill goals, which are data to TIME STRIKE and are 
cumulative over time. The kill goals constrain the total targets dead or in repair through 
the end of a particular period to a proportion of the total targets originally present at the 

start of the campaign. TIME STRIKE is allowed to kill targets up to the goal, but not 
over the goal in each period. Any difference below the goal is taxed against TVD by 
summing the weighted proportional differences over all periods for all target types. 

SimStrike calculates the same objective function as TIME STRIKE. The 
simulation routine within SimStrike is run once for each of TIME STRIKE'S sortie 
variables obtained from the output data file "TSVTST.CSV". At the end of a run, just 
before program flow passes back to the main program within SimStrike, the TVD reward 
is collected by multiplying the target value applying to the current period for the current 
target type by the quantity (DeadN + RegenN + DeadR + RegenR), which represents all 
the targets of the target type dead or in repair at this point in time. 

B.       SUMMARY OF COMPARISONS OF TIME STRIKE AND SIMSTRIKE 

Table 1 on the following page provides a summary of the comparisons made 

between TIME STRIKE and SimStrike in section A. 

19 



Category |         TIME STRIKE I              SimStrike 

Constraints on Sorties Fractional sorties and 
targets 

Integer sorties and targets 

Distribution of Sorties Deterministically uniform Randomly uniform over 
over periods periods 

EKS Fractional numbers of kills Integer numbers of kills 

Attrition Per Sortie Fractional losses of 
"aircraft" 

Integer losses of aircraft 

Kill Goals Cumulative proportion of Cumulative proportion of 
original number of targets original number of targets 
expected to be dead expected to be dead 

Time Periods and Planning Periods and days; mis- Periods and days; mis- 
Cycles BDA'd targets become BDA'd targets become 

restrikes the next day with restrikes the next day with 
all restrikes taken care of on the possibility existing that 
the day they are assigned not all restrikes will be 

taken care of on the day 
they are assigned, i.e., may 
carry over one more day 

BDA and Target Treated as proportions Treated as probabilities 
Regeneration 

Calculation of the Objective TVD taxed by penalties for TVD taxed by penalties for 
Function Value not meeting kill goals not meeting kill goals 

Table 1 - Comparison Summary of TIME STRIKE and SimStrike 

20 



ffl. RESULTS 

A.       RESULTS 

Two simplifications were made in SimStrike for the purposes of this thesis. The 
first was to make all aircraft arrive on the first day of the campaign. For this, the data 
files were matched to have the total amount of aircraft of each aircraft type simply be 
read in as being there the very first day of the first period. The second was to run TIME 
STRIKE and SimStrike over only one Major Regional Conflict (MRC). Therefore, the 
attribute of allowing aircraft swings between two MRCs was not modeled. 

A model data set was provided by Maj. Kirk Yost, USAF, (TIME STRIKE'S 

author) for an example Air Force simple strike scenario. The scenario the input data sets 
to TIME STRIKE represent are groups of known targets and their locations at various 
distances from the sortie origination point, a given set of aircraft, weapons, crew 
qualifications, weather forecast, kill goals, etc., meant to represent just one of many 
possible MRCs. The data set was unclassified, but representative of realistic data in use. 
For this data set, TIME STRIKE produced an answer of 4,140,022 "points". Using the 
same data set, after 1000 replications, SimStrike produced an (mean) answer of 
4,010,561 points with a (sample) standard deviation of 245,326. The answers produced 
at each replication of SimStrike are plotted on a histogram in Figure 2 on the next page. 
Assuming TIME STRIKE is producing the true mean and SimStrike is producing the 
sample mean and standard deviation for a large sample (large number of replications), 
the Sample t-Test [Ref. 2:p. 322] with a null hypothesis of H<,: n = n„ and corresponding 
alternative hypothesis H^ n * u« produced a test statistic value of 16.7. This is enough 
to reject the hypothesis that TIME STRIKE and SimStrike produce the same results at 
virtually any level of confidence desired. 

The question now is: What does this mean for TIME STRIKE? Does it lead one 
to conclude that the model is no good? The answer to this last question is emphatically 
NO. After all, the objective functions differ by only 1%. TIME STRIKE'S problems are 
incurable, but not serious, and these results only lead to the need to study the way the LP 

models reality a little closer. 

21 



4200000 - 

4000000 - 

3800000 - 

3600000 - 

3400000 - 

> 3200000 - 

3000000 - 

2800000 - 

2600000 - 

2400000 - 

2200000 - 
l     I     I     i     i     i     I 

0   100  200  300  400  500   60 

Frequency 

3 

Figure 2 - SimStrike Objective Function Value Histogram for 1000 Replications 

22 



B.       SOURCES OF DIFFERENCE 

This section will discuss some explanations of why TIME STRIKE and SimStrike 
results differ. 

1.        Period Transitions and Restrikes 

In TIME STRIKE, within the same period, any targets killed today which carry 

over to tomorrow as restrikes due to bad BDA, must be restruck before any further live 
targets of the same target type are allowed to be struck. A problem occurs when the 
restrikes carry over from the last day of one period to the first day of the next period, in 
which case the model does not allow sorties to be flown against them due to the 
problems of mathematical complexity at the time the model was developed. Instead, it 
discounts TVD by the number of restrikes which would have to be done, were they 
allowed to be, times the target value of this target type for the new period. The restrikes 
are then essentially discarded and regular sorties are flown against live targets of the 
target type. To reiterate, this only occurs at period transitions within TIME STRIKE. 

In SimStrike, period transitions are transparent as far as restrikes are concerned. 
If restrikes carry over from the last day of one period to the first day of the next period, 
they are restruck first, as they would be in any other day, before sorties are flown against 
actual live targets of the target type. SimStrike essentially views all the periods as 
actually just a string of days, which happen to transition through periods, only using the 
current period number to determine which data gets manipulated with other variables, 
e.g., target values, kill goals, etc. SimStrike merely lets restrikes randomly play out over 
time. This accounts for only a small numerical difference between the results of 
SimStrike and TIME STRIKE as shown in Table 2 below, and only a slight difference 
from the result SimStrike produced as noted in Section A above. 

Also shown in Table 2 is a sensitivity analysis for four other special cases 
performed to compare results between SimStrike and TIME STRIKE. As can be seen, 
the results all closely agree quantitatively, except for a target rich environment, Case 4, 
which is explained further in the next subsection below. The scaling factor for a target 
rich environment is the reduction from the base case, 1.0, which is no change in the 
original number of aircraft present, i.e., not target rich or target poor. For example, the 
scaling factor shown in Table 2 for Case 4 means the base case, 1.0, divided by 2, or half 
the number of aircraft originally present, to produce a scaling factor of (1.012=) 0.5. 

23 



TIME STRIKE SimStrike 
Objective Function Objective Function SimStrike 

Case Value Value Standard Deviation 

(l)Norestrike 4,140,022 4,000,164 236,407 
carry-over at period 

transitions 

(2) Perfect BDA 4,235,479 4,020,925 201,105 

(3) All target values 689,913 539,358 33,881 
set to 4.0 

(4) Target rich 4,115,600 3,774,709 278,424 
environment for 
scaling factor of 0.5 

(5) Target poor 4,162,430 4,125,762 277,408 
environment 

Table 2 - Sensitivity Analysis 

2.        Target Rich Environment 

Target rich environments were created by reducing the number of aircraft present 
to fly against the same number of targets in the original data set. The case shown in 
Table 2 is for half the original number of aircraft, or a scaling factor of 0.5. Several 
target rich environments were produced and results plotted in Figure 3 on the next page 
for TIME STRIKE and SimStrike. A scaling factor of 1.0 means the original number of 
aircraft present, or the base case. Any scaling factor less than 1.0 is a target rich 
environment, and anything above 1.0 would be target poor, which is not shown in Figure 
3 because TIME STRIKE and SimStrike closely agree quantitatively for a scaling factor 

of 1.0 and above. 

24 



4000000 - 

3000000 - 

Q 
^ 2000000 - 

1000000 - 

o - 

/    y 

"Solid Line" = TIN 

i                                    i                                    I 

0.0                                 0.5                                  1.0 

Scaling Factor for No. of Aircraft 

IE STRIKE; "Dashed Line" = SimStrike 

Figure 3 - Comparison of TIME STRIKE and SimStrike for a Target Rich 
Environment 

25 



Figure 3 shows a noticeable difference between results for TIME STRIKE and 
SimStrike for a target rich environment, but then rapidly approaching one another as a 
scaling factor of 1.0 is approached. The data used to plot Figure 3 is shown in Table 3 

below. Although not shown in Figure 3, the data for the target poor environment case of 
a scaling factor of 2.0 is shown in Table 3 for comparison purposes. 

TIME STRIKE SimStrike 

Objective Function Objective Function SimStrike 
Scaling Factor Value Value Standard Deviation 

0.000 0 0 0 

0.010 1,338,622 1,019,691 100,006 

0.025 2,362,772 2,217,805 89,532 
0.033 2,762,169 2,612,735 75,176 
0.050 3,390,982 3,319,477 74,465 
0.100 3,823,302 3,449,200 58,398 
0.200 4,066,308 3,798,582 105,531 
0.500 4,115,600 3,774,709 278,424 
1.000 4,140,022 4,010,561 245,326 
2.000 4,162,430 4,125,762 277,408 

Table 3 - Target Rich Environment Data for Figure 3 

3.        Proportioning of Sorties Over Time and Restrikes 

When TIME STRIKE decides what sorties will be flown in a campaign, it looks 
at its constraints and data, and then places a certain number of sorties to be flown by the 
various aircraft against the various targets in every day of every period. A portion of the 
sorties which have been selected to fly in every day of the campaign are there to account 
for restrikes. The extra number within the total allotted due to the restrike requirement is 
to exactly account for these restrikes, i.e., all the restrikes will be taken care of in their 

26 



entirety each day before the aircraft go on to fly sorties against live targets, and no 
restrikes will carry over to the next day. 

SimStrike does not recognize a certain number of the sorties to be flown on any 
particular day as being present solely for restrike purposes, as TIME STRIKE does. How 

many sorties will be needed to clear the restrikes is decided randomly, so it is possible 
that more or less sorties, if any, will be dedicated to restrikes than were in TIME STRIKE 
on any given day of the campaign. 

The potential source of difference here lies in the possibility that when SimStrike 
is doing restrikes, if a small number of aircraft are flying sorties at low sortie rates and 
low EKS values against the restrikes, not all the restrikes may be cleared in a day. 
Therefore, there may be some restrikes which carry over to the next day, which could 
lead to more or less being done on some particular day in SimStrike than TIME STRIKE 
would expect for its circumstances. This situation arises because the new day's restrikes 
in SimStrike would now include carry over restrikes from yesterday which were not 
completed. 

Experience with SimStrike, however, does show that most restrikes are done on 
the day they are encountered, and very few carry over to the next day. For example, if we 
look at the detailed statistical output for the first replication at the beginning of the base 
case output for SimStrike contained in Appendix B, the total number of restrikes which 
carry over from the last day of each period to the first day of the next period is shown in 
Table 2 below. 

Period Carry-over Restrikes 
1 38 
2 36 
3 34 
4 41 
5 29 

Table 4 - Example of Carry-Over Restrikes 

27 



The carry-over restrikes shown in Table 2 are the totals over all target types in 
each period, and when compared to the total targets of each type present and the total 
dead or in repair each period, the quantities in Table 2 represent well less than 1% of 
these totals. 

C.       CONCLUSIONS 

The differing results between SimStrike and TIME STRIKE are cause to examine 
closer TIME STRIKE'S modeling of reality. Although many estimates are being made, 
perhaps within the BDA equations in the optimization model, these hurdles are not 

insurmountable. The objective function values obtained by TIME STRIKE and 

SimStrike are similar, although the hypothesis they produce the same expected measure 

of effectiveness (MOE) is rejected. The sources of difference discussed in the previous 

section do not contribute significantly to the differing results, so the source of deviation 
must lie elsewhere. 

SimStrike was developed to model all the same things TIME STRIKE does, but 
to use probabilities where TIME STRIKE uses expectations. As shown in Table 1 in 
Chapter II, these probabilities were applied at the appropriate places where reality comes 
into play, while the integrity of other factors such as the distribution of sorties over 
periods, kill goals, and the calculation of the objective function value, were maintained 
exactly the same as TIME STRIKE. Therefore, somewhere within the many expectations 
used by TIME STRIKE for the purposes of optimization lies one or more approximations 
which may be too abstract. Thus, it is a matter of identifying and refining one or more of 
these expectations which is in order. 

28 



IV. FUTURE WORK 

A. WEATHER 

TIME STRIKE currently assumes that weather is known before profiles are 
selected for given aircraft types [Ref. l:p. 12]. Expectations for six weather states are 
read in as data and correlated with what weapons and tactics can be used for a given 
weather state against a certain target type, then the sorties are assigned. SimStrike uses 
the same expectations as data, then as a probability comparison to a uniform random 
number to see if there will be an aircraft sortie weather abort given the present weather 
state. TIME STRIKE and SimStrike are therefore both relying on the accuracy of the 
same forecast, and therefore both miss the true randomness of nature. 

A better model might be one in which weather is decided randomly each day. Of 
course linear programs do not have random number generators, so this is not an option 
for TIME STRIKE. But one could take SimStrike a step further (it would actually be a 
giant step in this case) and randomly decide weather on each day, and then pick the 
weapons and tactics on a day-by-day basis for available aircraft to fly sorties against 
targets. However, this kind of simulation would not read data in from the solution 

variables produced by a run of TIME STRIKE, it instead would be generating its own 
sorties over time, so it would therefore be a re-work of SimStrike. 

B. PROBABILITY DISTRIBUTION FOR RANDOM ROUNDING 

Currently, SimStrike uses a uniform random number to determine whether a non- 
integer value gets rounded up or down. Using this consistently where rounding is 
required means that, over a large number of replications, these rounded values average 
out to the non-integer value from TIME STRIKE. This rounding arises for sorties flown, 
EKS, and sortie rate values in SimStrike, a uniform random number being used to ensure 
SimStrike models TIME STRIKE as closely as possible. 

One might argue that this rounding may be better done using a Poisson 
distribution if the number of sorties flown as read from the file of solution variables 
produced by TIME STRIKE are viewed as events occurring over fixed time intervals. In 
this case, since the outcome is based on the total number of draws, or sortie occurrences, 

29 



to be made over time, the rounded values will not necessarily average out as closely to 
what their original non-integer values were as in the uniform random number case above. 

30 



APPENDIX A: PROGRAM LISTING AND DIRECTIONS FOR USE 

SimStrike is coded in Tuibo Pascal for Windows, but is compatible with Turbo 
Pascal for DOS as long as the "Uses WinCrt;" code line is commented out. SimStrike 
uses four input data files and produces one output file which can be opened by almost 
any spreadsheet application, however, our preference is Excel. Only one of the four data 

input files is "homemade" because it contains only selective data required by SimStrike 
which is contained in a much, much larger data input file to TIME STRIKE. The other 

three data input files are merely the same ones used by TIME STRIKE, but with the 
filename extension changed to make it useable by the Turbo Pascal compiler. 

For the output, the user has several options as annotated in the comments within 
the main program part of SimStrike. The output can take many forms, very limited or 
detailed based on what the user comments out or keeps in, but is set up to provide the 
most detailed statistics as listed in this Appendix, with an example output contained in 
Appendix B. The very last three lines of any output, however, will be the number of 
replications ran, the mean objective function value, and the standard deviation if the 
number of replications is greater that or equal to 30. 

Before running the program, there is a note in its comments at the very beginning 
of the program listing which must be heeded. Since the data segment created by the 
program is very large, the default values for the stack and heap sizes for the Turbo Pascal 
compiler are not of sufficient sizes. These should be manually set to 15,000 bytes each 
by the user before the program is compiled, or a stack overflow runtime error will result. 
Setting the stack and heap sizes too large, however, may prevent compilation if the 
machine does not have enough memory to support it. A typical 486 or Pentium PC with 
16MB of RAM will do a quick job of running SimStrike with a compiler stack and heap 
size of 15,000 bytes. 

SimStrike has been designed to be as robust as possible, but it is assumed that 
only a user somewhat knowledgeable of TIME STRIKE will actually be using it, so it is 
biased toward that end. Most terms used in SimStrike are those which would normally 
be known by those familiar with TIME STRIKE, and the detailed comments in the 
beginning and throughout the program listing are geared towards these users. Also, there 
is not complete data input error trapping, especially associated with some of the more 
larger data input files, because it is assumed only meaningful data will be used, and 

31 



would also cause an especially excessive additional amount of code to be added to an 
already very long program. 

This Appendix will now describe in detail how to use SimStrike, the program 
listing for which can be found on the following pages. It may be helpful to refer to the 

program listing as these directions are read. To reinforce the directions, the data input 
file "sim2in.dat", which is used by SimStrike, but not by TIME STRIKE, is presented 
after the program listing. This input file contains specific data from one of the larger 
data files used by TIME STRIKE. 

Conditions to be set prior to executing the directions for running SimStrike: 

• Set the STACK and HEAP sizes of the Turbo Pascal compiler on the machine 
on which SimStrike is to be run to 15,000 bytes (minimum) each. This is 
needed so the data segment created by SimStrike is accepted by the compiler, 
otherwise there will be a stack overflow runtime error. Note: Do not go 
overboard with the STACK and HEAP sizes. Setting them too large will 
prevent the compiler from compiling if the machine the program is run on 
does not have enough memory to support it. 

• Ensure the simulation program and the data files it will use all reside in the 
same directory. The output file will also be placed in this directory when it is 
created. Set the Turbo Pascal default directory to this directory if not already 
done so. 

• Ensure the data input file "sim2in.dat" in SimStrike's directory contains the 
same requisite data (see the listing later in this Appendix for details) as 
"standl3.dat" in TIME STRIKE'S "Data" directory. 

• Ensure the target values in the data input file "tgtval22.txt" in TIME 
STRIKE'S "Data" directory and in the data input file "tgtval22.dat" in 
SimStrike's directory are the same. The "tgtval22.dat" file used by SimStrike 
may be a copy of "tgtval22.txt" used by TIME STRIKE, with file extension 
changed, except that the "MRC1." preceding each target type number must be 
deleted before it is useable as an input file to SimStrike. The same 
requirements apply to the files "tgtdat22.txt" in TIME STRIKE'S "Data" 
directory and "tgtdat22.dat" in SimStrike's directory, also ensuring all the 
target data is the same for both. 

• Copy the file "tsvtstxsv" from TIME STRIKE'S "Results" directory to the 
directory the simulation program is in. Change its file extension to "dat", and 
then open it with Microsoft Wordpad (a common application on any PC with 

32 



any version of Windows installed) and remove the text lines and extra blank 
lines preceding each set of numerical data to which they apply. If there are 
any extra blank lines at the end of the file, remove these also. Note: Another 
application can be used to open and edit "tsvtst.dat" as long as the font is set 
to "Courier" or "Courier New". In either case, make sure to save it when 
done editing. 

Remember that there is no data input error trapping, so one must pay attention to 
the above directions and make sure they are followed exactly so input errors or bad 
results do not occur. In most cases it is simply a matter of copying files from one 
directory to the next, then just changing the file extension (and removing the "MRC1 " 
text in some cases). 

Directions for running SimStrike: 

If the program will be run via the DOS version of Pascal, then the code line 
"Uses WinCrt;" must be commented out. This is the first line of program 
code after the initial comments. 

Scroll down in the program listing to the constant declarations (code line 
"Const"). Here you may set the values of five of the constants used in the 
program: the number of replications, the seed for the random number 
generator, and three replication output instances. Note: The random number 
generator does not have to be seeded.  The "Randomize;" code line given in 
the main program part can be used instead, which seeds the random number 
generator with the system clock on the machine SimStrike is run on, and the 
"RandSeed" code line can be commented out. When using the Randomize 
function, however, the string of random numbers produced will not be 
repeated each time SimStrike is ran. When setting a replication output 
instance remember that these will be the instances out of all the replications 
which will be output in detailed statistical tabular format. If only one 
replication, or none, of these instances are desired to be included in the 
output, set the values in the "Const" declaration section to instances which are 
higher than the number of replications which are being ran. 

• Now scroll down to the main program part of SimStrike. Here will be found 
several comment blocks, which, among other things, explain how to change 
the output into other formats depending on one's desire. SimStrike "comes 
from the factory", per se, with the most detailed and useful output form, 
outputting one statistical tabular replication instance, along with objective 
function values for each replication, and the final statistics, all in Microsoft 

33 



Excel spreadsheet format. The output file which is created is "sim2out.csv", 
and can potentially be opened by other spreadsheet applications which accept 
this format. 

At this point SimStrike is ready to be run. Be advised that a previous version of 
"sim2out.dat", which may be open for viewing in a spreadsheet application, must be 
closed before actually running SimStrike because a runtime error will occur due to the 
inability of SimStrike to write to the output file if it is still open. Also, there are detailed 
comments at the beginning and throughout the program listing which provide significant 
help in interpreting sections of program code and aid in getting it set up for running. 

The program listing starts on the next page, and the listing for "sim2in.dat" can be 

found on the pages immediately following the program listing. 

34 



Program Simulation2; 
{ 
Programmer:     John J. Kosina 

Thesis Advisor:  Prof. Alan R. Washburn 
Operations Research Department 
Naval Postgraduate School, Monterey, CA 

Revision Date:   7/15/97 

Purpose: 

Notes: 

Monte Carlo simulation used to conduct error analysis 
on the Air Force's Time Strike Optimization model 
using some modifications to certain variables and data 
(explained below) used in objective function 4 to 
maximize the weighted sum of TVD. GAMS model is run 
in parallel to compare outputs. 

(1) "sim2in.dat" data input file must contain data in the form: 

1st line: 
TVDWGT, GOALWGT 

2nd line: 
number of periods, number of days in each period 

3rd line: 
number of aircraft types 

Each of following lines up to the total number of AIRCRAFT 
TYPES, one line per aircraft type: 

aircraft type, number of aircraft for aircraft type starting, 
max loss allowed for the aircraft type, sortie rate (sorties 
per aircraft per day) for the aircraft type 

Next line: 
number of target classes 

Each of following lines up to the total number of TARGET CLASSES, 
one line per target class: 

proportion of targets in target class to be killed to achieve 
the goal for each time period 

Each of following lines up to the total number of TARGET CLASSES, 
one line per target class: 

objective function penalty for not meeting the time-scripted 
goal for the target class (as given in the data block just 
prior to this one) by the end of the period for each time period 

Each of following lines up to the total number of TARGET CLASSES, 
one line per target class: 

targets which belong to the target class 

(2) "tgtval22.dat" data input file is target values for each target type 
by period in which they are killed.  These values may be randomly 
generated for all the target types as long as the same data values 
are used for both the GAMS model and simulation runs. 

(3) "tgtdat22.dat" data input file is target data by distance 
band (used to obtain total targets of each type), bda probability, 
repair time, percent of killed targets that regenerate.  Target 
Elements are not used by the simulation.  This is the same data as 
those used by the GAMS model except that target data by distance 
band must be integer (therefore will be the same for both GAMS 
model and simulation) , and repair times must be integer (also same 
for both). 

(4) "tsvtst.dat" data input file is conversion of GAMS model output 
file "tsvtst.csv". This file contains the solution data and variable 
values for the last run of the GAMS model. 

When the GAMS model is run for a certain data set, the "tsvtst.csv" 
file from the GAMS model Results directory should be 
copied to the directory containing the simulation and renamed to 
"tsvtst.dat".  After deleting the short text lines and any extra 
blank lines at the beginning of the long lines of numerical data for 
each period, data may be used as is. Even though they are real 
values seperated by commas, which is not a proper data format for 
Turbo Pascal, this simulation has a Procedure which effectively 

35 



picks out the pertinent data and converts them to either integer 
or real values based on the use. 

Pertinent data from this file which is stored and used by the 
simulation is:  time period, aircraft type flying sorties, target 
type sorties are flown against, EKS per sortie, probability of no 
weather aborts (NABORT) for the particular sorties, attrition per 
sortie, and sorties flown. 

All data is used "as is", with the exception of sorties flown, which 
are reported as real valued quantities by the GAMS model.  For this 
simulation we are interested in integer values (since you can only 
fly a whole number of sorties in real life!), therefore, after the 
real number of sorties flown is uniformly distributed over the current 
period, another Procedure is used to round this either up or down, 
based on a U[0,1] random number, to an integer value.  The integer 
number of sorties is then the quantity used by the simulation. When a 
kill is made by a sortie, the same is done to the EKS value for 
that particular sortie since you can only kill an integer number 
of targets in real life! 

(5) Output will be the objective function value after a large number 
of replications (see NUMBERREPS below in CONST declarations) .  Extra 
output statistics can also be obtained by removing comment brackets 
from those places noted in the Main Program part of the Simulation 
below. Output is sent to "sim2out.csv", which can be viewed in 
Excel spreadsheet format.  There are code options to allow output to 
go to the computer screen also. 

(6) Data which should be the same as the GAMS model LP is: 

time period 
aircraft types 
target types 
EKS per sortie 
probability of no weather aborts 
attrition per sortie 
number of aircraft starting for each type (integer) 
max loss allowed for each aircraft type (integer) 
sortie rate for each aircraft type 
TVDWGT 
GOALWGT 
number of periods 
number of planning cycles (days) in each period 
kill goals for each target class 
number of targets starting for each type (integer) 
penalties for not achieving kill goals for each target class 
target class-target correspondence 
repair proportion/probability for each target type 
probability of correct BDA for each target type 

(7) Probabilities used in the simulation are (GAMS model data or 
variable name correspondence, if any, is shown in parentheses next 
to each): 

aircraft attrition (ATTR) 
prob, of no weather abort (NABORT) 
target BDA prob., i.e. prob, of correct BDA for a target (BDAPROB, 
B (as used in target regeneration and BDA equations)) 

prob, of incorrect BDA for a target (NB (= 1 - B as used in target 
regeneration and BDA equations)) 

prob, the target is repairable after a strike (REPROP, Pr (as used 
in target regeneration and BDA equations)) 

prob, a target is not repairable (NPr (= 1 - Pr as used in target 
regeneration and BDA equations)) 

prob, a target regenerates in the next planning cycle (Pc (as used 
in target regeneration and BDA equations)) 

prob, a target does not regenerate in the next planning cycle (NPc 
(= 1 - Pc as used in target regeneration and BDA equations) ) 

conversion of real no. of sorties flown to integer (x) 
conversion of real valued sortie rates to integer (SRTRTPER) 
conversion of real no. of targets killed from associated EKS 

to integer (EKS) 
choice from which category restrikes will come 

(8) Output generated by this simulation to be compared with LP: 

mean objective function value for weighted sum of target value 

36 



destroyed (TVD) over a large number of replications 

Additional output generated by simulation: 

standard deviation for mean objective function value 
number of replications done 

(9) Data input files are "simlin.dat", "tgtval22.dat", 
"tgtdat22.dat", and "tsvtst.dat". Output file is 
"sim2out.csv". 

(10) Note that the MAXLOSS values in the GAMS model input file 
"standl3.dat" must also be rounded to integer values so the GAMS 
model and simulation both use the same data.  This is also true of 
the number of aircraft and targets of each type in their respective 
data input files. 

(11) There is no data input error trapping so data in input files 
must be entered correctly and also be meaningful for proper 
output to be generated. Basically, a user knowledgeable of the 
GAMS model and simulation is assumed here! 

(12) *** IMPORTANT! * + *  Set the STACK and HEAP sizes of the compiler 
on the machine this is run on to 15,000 bytes (minimum) each. 
This is needed so the data segment created by this program is 
accepted by the compiler, otherwise there will be a stack overflow 
runtime error. Note: Don't go overboard either!  Setting the 
STACK and HEAP sizes too large will prevent the compiler from 
compiling if the machine this is run on does not have enough 
memory to support it. 

} 
Uses WinCrt; 

Const 
NUMBERREPS = 1000; 
SEEDFORRANDNUMS = 999; 
MAXNUMPERIODS = 7; 
MAXNUMACFTTYPES = 10; 
MAXNUMTGTTYPES = 87; 
MAXNUMTGTCLASSES = 10; 
MAXNUMDISTBANDS = 7; 
REPOUT1 = 1; 
REP0UT2 = 1057; 
REP0UT3 = 1092; 

{set number of replications here} 
(seed for random numbers so they are the same each time if needed} 
(max number of periods} 
(max number of aircraft types expected to be encountered} 
(max number of target types} 
(max number of target classes} 
(max number of distance bands} 
(replication output instance} 

(replication output instance} 
(replication output instance} 

Type 
PeriodlndexRange = 1. .MAXNUMPERIODS; 
AcftTypelndexRange = 1..MAXNUMACFTTYPES; 
TgtTypelndexRange = 1. .MAXNUMTGTTYPES; 
TgtClassIndexRange = 1. .MAXNUMTGTCLASSES; 
AcftTypeArray = ArraytAcftTypelndexRange] Of Integer; 
SortieRateArray = ArraytAcftTypelndexRange) Of Real; 
TgtValueArray = Array[TgtTypelndexRange, PeriodlndexRange] Of Real; 
TgtKillArray = Array ITgtTypelndexRange, PeriodlndexRange] Of Integer; 
TgtRealTypeArray = Array [TgtTypelndexRange] Of Real; 
TgtlntTypeArray = Array [TgtTypelndexRange] Of Integer; 
KillGoalArray = Array[TgtClassIndexRange, PeriodlndexRange] Of Real; 
TgtClassTgtArray = Array [TgtClassIndexRange, TgtTypelndexRange] Of Integer; 
TgtClassArray = Array[TgtClassIndexRange] Of Integer; 
StringType = String[10]; 

Function UniformProb: Real; 
f 
A uniform [0,1] random number generator available for any procedure or 
function which requires a U[0,1] probability. 

Pre:  None. 
Post: U[0,1] probability. 

} 
Begin  (Function UniformProb} 
UniformProb := Random; 

End;  {Function UniformProb} 

Function Binomial (Num: Integer; 
Prob: Real): Integer; 

{ 
Determines the number of possibilities from a certain number of samples, Num, which 
meet the condition U[0,1] <= Prob, where Prob is a particular probability from 

37 



any particular distribution desired which was calculated previously and passed to 
this Function. 

Pre:  Num = total number of samples (must be > 0); Prob = probability for a U[0,1] 
to be compared against. 

Post:  Binomial = number out of the total for which U[0,1] <= Prob is true. 
} 
Var 

I, Count: Integer,- 

Begin  {Function Binomial) 
Count := 0; 
For I := 1 To Num Do 
Begin 

If (UniformProb <= Prob) Then 
Begin 

Count := Count + 1; 
End;  {If) 

End;  {For) 
Binomial := Count; 

End;  {Function Binomial) 

Function Getlnteger (Num: Real): Integer; 
{ 
Converts a Real number to an Integer number by rounding either up or down based 
on a U[0,1] random number. 

Pre:  Num = Real number 
Post: Getlnteger = Integer number 

) 
Var 

Result: Integer; 

Begin  {Function Getlnteger) 
If (UniformProb <= Frac (Num)) Then 
Begin 

Result := Trunc(Num) + 1; 
End 
Else 
Begin 

Result := Trunc(Num); 
End;  {If) 
Getlnteger := Result; 

End;  {Function Getlnteger) 

Function Raise (Base: Real; 
Exponent: Integer): Real; 

{ 
Raises the Base to the Exponent power. 

Pre:   Exponent > 0 
Post: Raise = Base to the Exponent power 

) 
Var 

Count: Integer; 
Product: Real; 

Begin  {Function Raise) 
Product := 1; 
For Count := 1 To Exponent Do 
Begin 

Product := Product * Base; 
End;  {For) 
Raise := Product; 

End;  {Function Raise) 

Procedure GetRealNumber (St: StringType; 
Var x: Real); 

{ 
Converts a string to it's real valued number. Only handles positive numbers, and 
if the number will be < 1, there must be a leading zero before the decimal point, 
e.g. St = '0.0394' vice St = '.0394'. 

Pre:  St = a string of type StringType. 
Post: x = the real valued quantity imbedded in St. 

) 
Var 

I: Integer; 

38 



Numl, Num2: Real; 
OnPeriod: Boolean; 
Stl, St2: StringType; 

Begin  {Procedure GetRealNumber) 
Numl := 0.0; 
Num2 := 0.0; 
Stl := "; 
St2 := "; 
OnPeriod := True; 
For I := 1 To Length(St) Do 
Begin 

If ((St[I] <> '.*) And (OnPeriod)) Then 
Begin 

Stl :- Stl + St[I]; 
End 
Else 
Begin 

If OnPeriod Then 
Begin 
OnPeriod := Falser- 

End 
Else 
Begin 

St2 := St2 + St[I]; 
End;  {If} 

End;  {If} 
End;  {For} 
For I := 1 To Length(Stl) Do 
Begin 

Numl := Numl + (Ord(Stl[IJ) - 48) * Raise (10, (Length(Stl) - I)); 
End;  {For} 
If (Length(St2) > 0) Then 
Begin 

For I := 1 To Length(St2) Do 
Begin 

Num2 := Num2 + (Ord(St2[I]) - 48) * Raise (10, (Length (St2) - I)); 
End;  {For} 
Num2 := Num2 / (Raise (10, Length(St2))); 

End;  {If} 
x := Numl + Num2; 

End;  {Procedure GetRealNumber} 

Function GetTargetClass (Tgt: Integer; 
TgtClassTgt: TgtClassTgtArray; 
TgtsInClass: TgtClassArray; 
NumTgtClasses: Integer): Integer; 

{ 
For a given target type, determines which target class it belongs to. 

Pre:  Target type in question, target class data arrays, and number of target classes. 
Post: GetTargetClass = Target class the target belongs to. 

} 
Var 

Class, Target, Temp: Integer; 

Begin  {Function GetTargetClass} 
For Class := 1 To NumTgtClasses Do 
Begin 

For Target := 1 To TgtsInClass[Class} Do 
Begin 

If (TgtClassTgt[Class,Target] = Tgt) Then 
Begin 

Temp := Class; 
Target := TgtsInClass[Class]; 
Class := NumTgtClasses; 

End;  {If} 
End;  {For} 

End;  {For} 
GetTargetClass := Temp; 

End;  {Function GetTargetClass} 

Procedure RunSimulation (NumDays, NumAcft, MaxLoss: Integer; 
SortieRate: Real; 
VarAcftLost: Integer; 
TotTgts: Integer; 
TgtVal, Goal: Real; 
Eks, Nabort, Attr, x: Real; 

39 



Var TotSortiesFlown: Integer; 
Pr, NPr, Pc, NPc, B, NB: Real; 
Var LiveN, DeadN, RegenN: Integer; 
Var LiveR, DeadR, RegenR, deltaTgtsKilled: Integer; 
Var TempTvd: Real); 

For the given mission data, runs the simulation and determines the Target Value 
Destroyed (TVD).  This Procedure is run for one aircraft type, flying a certain profile, 
against a particular target type, with sorties distributed uniformly over one period. 
The simulation loops through the days in the period and the number of aircraft in 
the aircraft type until all sorties are flown, OR all the targets of the target type 
are killed, OR the max number of the aircraft type are lost, OR the kill-goal for the 
period has been achieved.  It is important to note that this Procedure is run once for 
each line of data in "tsvtst.dat".  It essentially re-flies the sorties the GAMS model 
flew and determines the outcome randomly for later comparison with the GAMS model results. 

Pre: See the parameters passed to the Procedure above. 
Post: For a particular engagement flown, updates aircraft of the aircraft type lost, 

targets of the target type killed, future restrikes and repairable targets, 
future regeneration of targets, and total TVD. 

Variable definitions: 

*** For parameters passed to the Procedure, see Main Program variable definitions as 
the same names for them were used. 

AcftKilled - stores a Boolean value for whether or not an aircraft is attrited. 
AcftWxAbort - stores a Boolean value for whether or not an aircraft experiences an 

in-flight weather abort. 
delta - used generically to determine an incremental change in some integer variable. 
deltaB - used to store the number of kills from the total amount made as a result of 

a regular strike based on the probability "B" which will go to the 
"non-restrikeable" category (become either DeadN or RegenN). 

deltaBNPr - used to store the number of kills from deltaB which will become DeadN 
based on the probability "NPr". 

deltaBPr - used to store the number of kills from deltaB which will become RegenN 
based on the probability "Pr". 

deltaNB - used to store the number of kills from the total amount made as a result of 
a regular strike based on the probability "NB" which will go to the 
"restrikeable" category (become either DeadR or RegenR). 

deltaNBNPr - used to store the number of kills from deltaNB which will become DeadR 
based on the probability "NPr". 

deltaNBPr - used to store the number of kills from deltaNB which will become RegenR 
based on the probability "Pr". 

deltaPd - used to store the number of periods ahead of the current one that a target 
will be regenerated in. 

I - counter variable for loops. 
InRegularStrikePhase - boolean variable which indicates whether the regular strike phase 

has been entered or not in the current day so as to prevent the 
restrike phase from occurring more than once per day. 

K - counter variable for loops. 
MaxSortiesToday - the integer max number of sorties which may be flown today based on 

sorties per day as derived from the sorties flown for the period 
read in from "tsvtst.dat". 

NumTgtsKilled - integer number of targets killed by a successful sortie based on EKS. 
PropKilled - cumulative proportion of targets of the target type killed. 
RTypeTotal - total number of targets in all restrike categories which are currently 

subject to restrike. 
SortiesFlownToday - counter to keep track of the sorties flown on the particular day 

for comparison to see if the max sorties for the day have been 
flown. 

SortiesPerAcftPerDay - sortie rate for each aircraft of the aircraft type. 
SortiesPerDay - sorties per day, uniformly distributed over the period. 
SortiesToFly - the sorties which will actually be flown on a particular day. 
Start - the starting point for the For loop over the number of aircraft of the aircraft 

type. 
TempPropKilled - temporary proportion of the total number of targets killed; calculated 

in advance to compare to the kill-goal before kills are actually applied 
to the LiveN type targets. 

WhichRType - random variable to aid in deciding from which restrike category the kills 
held in the variable NumTgtsKilled will be applied to. 

Notes for below: 

(1)  This uniformly distributes the number of sorties to be flown over the period. 
The integer number of sorties actually flown on any day is found using 

40 



SortiesPerDay in the Function Getlnteger.  SortiesPerAcftPerDay is the sortie 
rate for each aircraft of the particular aircraft type. 

(2) While there are sorties left to fly in this day, and the max number of aircraft 
have not been lost, and the total amount of targets in this type have not been 
killed, and the kill-goal for the period has not been met, sorties may still be 
flown. 

(3) If an aircraft is attrited, it is lost, and therefore any sorties it had left to 
fly are also lost. 

(4) If an aircraft is not attrited and does not experience an in-flight weather abort, 
it is expected to make kills based on EKS.  However, a sortie cannot kill more 
targets than the total amount of the target type present (common sense!), 
therefore this is also accounted for and the number of kills from the sortie 
adjusted if necessary. Also, a sortie is restricted by the kill-goal for this 
target type for the particular period, kill goals being cumulative across the 
periods. The sorties may kill up to the goal, under the goal, but not over the 
goal. 

(5) The target value credited is for every target of this target type which is dead or 
in repair over all periods up through the current one, up to the current kill-goal. 

(6) While there are mis-classified targets scheduled for restrike due to bad BDA in 
the previous planning cycle, and there are sorties left to fly in this day, and 
the max number of aircraft have not been lost, and the max number of sorties for 
the day have not been flown yet, these restrikes must be done first before other 
targets are engaged.  Note, an aircraft doing restrikes is still subject to 
attrition. 

(7) The proportion killed are the dead targets plus targets in repair divided by the 
total number of targets of the target type starting.  It is calculated this way 
because targets in repair where initially killed to get them into that category, 
and are recognized as dead until they reappear. This is the quantity which is 
compared to the kill-goal for the target type. Note:  There is no chance for 
division by zero in the calculation of the proportion since the denominator 
remains unchanged throughout the entire program run.  The quantity in the 
denominator will always contain the total number of targets of the target type 
which started the program run, the total amount killed being kept track of by 
other variables and compared to the original number present to determine the 
proportion killed.  This is convenient calculation wise since kill-goals are 
cumulative over time. Also, this simulation routine is only run for valid 
sortie-target engagement combinations as determined by the GAMS model, so the 
quantity in the denominator will always be a quantity greater than zero. 

(8) Any targets under repair but restrikeable will either become dead forever or under 
repair and NON-restrikeable. Any targets which are live and restrikeable are 
targets which have just came out of repair but are immediately restruck, and then 
become either dead forever or under repair and NON-restrikeable. 

(9) This If..Then represents the case in which all restrikeable targets have been 
restruck, but the last restrike sortie flown resulted in overkill, i.e., the 
number of targets killed based on the sortie's EKS was greater than the number 
of targets left to restrike.  Therefore, this overkill is applied to live targets 
as a regular strike, where it is assumed that live targets existed in the 
vicinity of the restrikes when they occured, however, the overkill is applied 
without the risk of aircraft attrition or weather abort since these were already 
checked for when the sortie occured. 

(10) Note that an aircraft which suffers an in-flight weather abort is still subject to 
attrition, thus explains the position of this conditional check in the overall 
If..Then structure. 

(11) Each surviving aircraft of the aircraft type gets a chance to fly the sorties per 
day, in accordance with their sortie rate, until all the days are done or sorties 
have been flown, or the kill goal is reached.  The total sorties which may be flown 
by all aircraft for each day, however, is capped at a maximum derived from the 
sorties flown from "tsvtst.dat". When the limit has been reached, we skip to 
the next day. 

(12) Any dead and restrikeable targets, i.e., mis-BDA'd, will, with probability 1.0, 
become dead forever when restruck because their "true identity" becomes known 
upon restrike. 

(13) The current sortie on a restrike mission was not attrited and did not experience a 
weather abort, so the category of targets it will restrike will be decided randomly 
with the category having the most number of restrikeable targets having the higher 
probability of being picked. 

(14) A temporary proportion of the total targets killed is calculated in advance before 
the current value of NumTgtsKilled is applied to the LiveN type targets so it can 
be predicted whether or not applying all the kills will cause the kill-goal to be 
exceeded.  If the kill-goal would be exceeded, NumTgtsKilled is successively 
decremented by 1 until either the predicted value of PropKilled does not exceed the 
kill-goal, or NumTgtsKilled equals 0. 

} 
Var 

SortiesToFly, NumTgtsKilled, deltaB, deltaNB, deltaBPr, deltaBNPr: Integer; 
I, K, deltaPd, delta, deltaNBPr, deltaNBNPr, RTypeTotal: Integer; 
SortiesFlownToday, MaxSortiesToday, Start: Integer; 
PropKilled, SortiesPerDay, SortiesPerAcftPerDay, WhichRType: Real; 

41 



TempPropKilled: Real; 
AcftKilled, AcftWxAbort, InRegularStrikePhase: Boolean; 

Begin {Procedure RunSimulation} 
SortiesPerDay := x / NumDays;  {** Note 1 **} 
SortiesPerAcftPerDay := SortieRate;  {** Note 1 **} 
AcftKilled := False; 
AcftWxAbort := False; 
Start := AcftLost + 1; 
For I := 1 To NumDays Do 
Begin 

{ 
Regeneration Phase ***** 

If (RegenN > 0) Then 
Begin 

delta := Binomial (RegenN, Pc); 
LiveN := LiveN + delta; 
RegenN :- RegenN - delta; 

End;  {If} 
If (RegenR > 0) Then 
Begin 

delta := Binomial (RegenR, Pc) ; 
LiveR := LiveR + delta; 
RegenR := RegenR - delta; 

End;  {If) 
PropKilled := DeadN / TotTgts;}  {** debug alternative to next line **} 
PropKilled := (DeadN + RegenN + DeadR + RegenR) / TotTgts;  {** Note 7 **} 
MaxSortiesToday := Getlnteger (SortiesPerDay) ; 
SortiesFlownToday := 0; 
InRegularStrikePhase := False; 
For K := Start To NumAcft Do  {** Note 11 **} 
Begin 

SortiesToFly := Getlnteger (SortiesPerAcftPerDay); 

***** Restrike Phase ***** 

NumTgtsKilled := 0; 
While ((SortiesToFly > 0) And (AcftLost < MaxLoss) And ((LiveR > 0) Or (DeadR > 0) Or 

(RegenR > 0)) And (SortiesFlownToday < MaxSortiesToday) And 
(Not InRegularStrikePhase)) Do  {** Note 6 **} 

Begin 
SortiesFlownToday := SortiesFlownToday + 1; 
SortiesToFly := SortiesToFly - 1; 
TotSortiesFlown := TotSortiesFlown + 1;  {** Data purposes only **} 
AcftKilled := (UniformProb <= Attr); 
If AcftKilled Then 
Begin 
AcftLost := AcftLost + 1; 
SortiesToFly := 0;  {** Note 3 **} 

End 
Else 
Begin 
AcftWxAbort := (UniformProb > Nabort);  (** Note 10 **} 
If (Not AcftWxAbort) Then 
Begin 
NumTgtsKilled := Getlnteger (Eks);  {** Note 4 **} 
While ((NumTgtsKilled > 0) And ((LiveR > 0) Or (DeadR > 0) Or (RegenR > 0) ) ) Do 
Begin  {** Note 13 **} 

RTypeTotal := LiveR + DeadR + RegenR; 
WhichRType := RTypeTotal * Random; 
If ((WhichRType <= LiveR) And (LiveR > 0)) Then 
Begin 

If (LiveR <= NumTgtsKilled) Then  {** Note 8 **} 
Begin 

NumTgtsKilled := NumTgtsKilled - LiveR; 
delta := Binomial (LiveR, Pr); 
LiveR := LiveR - delta; 
RegenN := RegenN + delta; 

+ LiveR; DeadN := DeadN 
LiveR := 0; 

End 
Else 
Begin 

LiveR := LiveR 
delta := Binom 

NumTgtsKilled; 
:= Binomial (NumTgtsKilled, Pr); 

NumTgtsKilled := NumTgtsKilled - delta; 
RegenN := RegenN + delta; 

42 



DeadN := DeadN + NumTgtsKilled; 
NumTgtsKilled := 0; 

End;  {If} 
End 
Else If ((WhichRType <= DeadR) And (DeadR > 0)) Then 
Begin 

If (DeadR <= NumTgtsKilled) Then  {** Note 12 **) 
Begin 
NumTgtsKilled := NumTgtsKilled - DeadR; 
DeadN := DeadN + DeadR; 
DeadR := 0; 

End 
Else 
Begin 

DeadR :- DeadR - NumTgtsKilled; 
DeadN := DeadN + NumTgtsKilled; 
NumTgtsKilled := 0; 

End;  {If} 
End 
Else 
Begin 

If (RegenR > 0) Then  {** Note 8 **} 
Begin 

If (RegenR <=» NumTgtsKilled) Then 
Begin 

NumTgtsKilled := NumTgtsKilled - RegenR; 
delta := Binomial (RegenR, Pr) ; 
RegenR := RegenR - delta; 
RegenN := RegenN + delta; 
DeadN := DeadN + RegenR; 
RegenR := 0; 

End 
Else 
Begin 

RegenR := RegenR - NumTgtsKilled; 
delta := Binomial (NumTgtsKilled, Pr); 
NumTgtsKilled := NumTgtsKilled - delta; 
RegenN := RegenN + delta; 
DeadN := DeadN + NumTgtsKilled; 
NumTgtsKilled := 0; 

End;  {If} 
End;  {If} 

End;  {If} 
End;  {While} 

End;  (If Not AcftWxAbort) 
End;  {If AcftKilled} 

End;  {Main While loop for Restrike Phase} 
{ 
***** Regular Strike and Redistribution of Kills Phase ***** 

} 
{ 

The If..Then below allows any left over "kills" in the variable NumTgtsKilled which 
were not needed to complete all the restrikes from the restrike phase above to be 
applied to LiveN targets, if any.  Remove the single comment brackets in column 1 
ONLY if you want to use this code.  ** Note ** This is not consistent with how Time 
Strike allocates sorties across time accounting for restrikes, but can be used for 
exploratory purposes by the user. 

} 
{     If ((LiveR = 0) And (DeadR = 0) And (RegenR = 0) And (NumTgtsKilled > 0) And 

(LiveN > 0)) Then  {** Note 9 **} 
{     Begin 

TempPropKilled := (DeadN + RegenN + DeadR + RegenR + NumTgtsKilled) / TotTgts; 
While ((TempPropKilled > Goal) And (NumTgtsKilled > 0)) Do  {** Note 14 **} 

{      Begin 
NumTgtsKilled := NumTgtsKilled - 1; 
TempPropKilled := (DeadN + RegenN + DeadR + RegenR + NumTgtsKilled) / TotTgts; 

End;  {While} 
{       If (NumTgtsKilled > 0) Then 

Begin 
If (LiveN <= NumTgtsKilled) Then 
Begin 

deltaTgtsKilled :- deltaTgtsKilled + LiveN; 
deltaB := Binomial (LiveN, B); 
deltaNB := LiveN - deltaB; 
LiveN := 0; 

End 

43 



Else 
Begin 
deltaTgtsKilled := deltaTgtsKilled + NumTgtsKilled; 
deltaB := Binomial (NumTgtsKilled, B); 
deltaNB := NumTgtsKilled - deltaB; 
LiveN := LiveN - NumTgtsKilled; 

End;  {If} 
{        If (deltaB > 0) Then 

Begin 
deltaBPr := Binomial (deltaB, Pr); 
deltaBNPr := deltaB - deltaBPr; 
RegenN := RegenN + deltaBPr; 
DeadN := DeadN + deltaBNPr; 

End;  {If} 
{ If (deltaNB > 0) Then 

Begin 
deltaNBPr := Binomial (deltaNB, Pr); 
deltaNBNPr := deltaNB - deltaNBPr; 
RegenR := RegenR + deltaNBPr; 
DeadR := DeadR + deltaNBNPr; 

End;  {If} 
{       End;  {If} 
{     End;  {If} 
{     PropKilled :- DeadN / TotTgts;  {** debug alternative to next line **} 

PropKilled := (DeadN + RegenN + DeadR + RegenR) / TotTgts;  {** Note 7 **} 
While ((SortiesToFly > 0) And (AcftLost < MaxLoss) And (LiveN > 0) And 

(DeadN < TotTgts) And (PropKilled < Goal) And 
(SortiesFlownToday < MaxSortiesToday)) Do  {** Note 2 **} 

Begin 
InRegularStrikePhase := True; 
SortiesFlownToday := SortiesFlownToday + 1; 
SortiesToFly := SortiesToFly - 1; 
TotSortiesFlown := TotSortiesFlown +1;  {** Data purposes only **} 
AcftKilled := (UniformProb <= Attr); 
If AcftKilled Then 
Begin 
AcftLost := AcftLost + 1; 
SortiesToFly := 0;  {** Note 3 **} 

End 
Else 
Begin 
AcftWxAbort := (UniformProb > Nabort);  {** Note 10 **} 
If (Not AcftWxAbort) Then 
Begin 
NumTgtsKilled := Getlnteger (Eks);  {** Note 4   **} 
TempPropKilled := (DeadN + RegenN + DeadR + RegenR + NumTgtsKilled) / TotTgts; 
While ((TempPropKilled > Goal) And (NumTgtsKilled > 0) ) Do {**  Note 14 **} 
Begin 
NumTgtsKilled := NumTgtsKilled - 1; 
TempPropKilled := (DeadN + RegenN + DeadR + RegenR + NumTgtsKilled) / TotTgts; 

End;  {While} 
If (NumTgtsKilled > 0) Then 
Begin 

If (LiveN <= NumTgtsKilled) Then 
Begin 
deltaTgtsKilled :- deltaTgtsKilled + LiveN; 
deltaB := Binomial (LiveN, B); 
deltaNB := LiveN - deltaB; 
LiveN := 0; 

End 
Else 
Begin 

deltaTgtsKilled :- deltaTgtsKilled + NumTgtsKilled; 
deltaB := Binomial (NumTgtsKilled, B) ; 
deltaNB := NumTgtsKilled - deltaB; 
LiveN := LiveN - NumTgtsKilled; 

End;  {If} 
If (deltaB > 0) Then 
Begin 
deltaBPr := Binomial (deltaB, Pr); 
deltaBNPr := deltaB - deltaBPr; 
RegenN := RegenN + deltaBPr; 
DeadN := DeadN + deltaBNPr; 

End;  {If} 
If (deltaNB > 0) Then 
Begin 

deltaNBPr := Binomial (deltaNB, Pr) ; 
deltaNBNPr -.= deltaNB - deltaNBPr; 

44 



RegenR := RegenR + deltaNBPr; 
DeadR := DeadR + deltaNBNPr; 

End;  {If} 
End;  {If} 

( PropKilled := DeadN / TotTgts;}  {** debug alternative to next line **} 
PropKilled := (DeadN + RegenN + DeadR + RegenR) / TotTgts;  {** Note 7 **} 

End;  {If Not AcftWxAbort} 
End;  {If AcftKilled} 

End;  {While loop for Regular Strike and Redistribution of Kills Phase} 
If (SortiesFlownToday >= MaxSortiesToday) Then  {** Note 11 **} 
Begin 
K := NumAcft; 

End;  {If} 
End;  {For loop for aircraft} 
Start := AcftLost + 1; 

End;  {For loop for days} 
TempTvd := TgtVal * (DeadN + RegenN + DeadR + RegenR);  {** Note 5 **} 

End;  {Procedure RunSimulation} 

Procedure GetPdiffValues (NumPeriods, NumTgtTypes, NumTgtClasses: Integer; 
TgtsDeadOrlnRepair: TgtKillArray; 
TotTgts: TgtlntTypeArray; 
TgtClassTgt: TgtClassTgtArray; 
TgtsInClass: TgtClassArray; 
Goal: KillGoalArray; 
Var Pdiff: TgtValueArray); 

{ 
Calculates the pdiff values (proportion of kills below the goal for each target type 
in each period) to be used in the objective function calculation.  Note that there 
are no targets present of some target types, so sorties are not flown against them. 
Therefore, division by zero must be accounted for below. Also, if there are targets 
of a target type present, but no kills were made, pdiff is merely set to the kill-goal 
for the target class, i.e., max penalty possible is charged for the case-in-point. 

Pre:  Number of periods, target types, and target classes present. Cumulative number 
of targets of each type dead or in repair each period by period, total targets of 
each type which were present/alive at the start of the program run.  Target 
Class-Target correspondence data along with the number of target types in each 
class. Kill goals for each target class in each period. 

Post:  Pdiff array = proportion of kills below the goal for each target type in 
each period 

} 
Var 

Pd, Tgt, Class, I, TotTgtsKilled: Integer; 
PropKilled: Real; 

Begin  {Procedure GetPdiffValues} 
For Pd := 1 To NumPeriods Do 
Begin 

For Tgt := 1 To NumTgtTypes Do 
Begin 

Class := GetTargetClass (Tgt, TgtClassTgt, TgtsInClass, NumTgtClasses); 
{ 

Total targets killed (actually dead or in repair) are calculated with a For loop here 
because the cumulatives used in the proportion calculation below must be for only the 
target type up through the current period of the outer loop. 

} 
TotTgtsKilled := 0; 
For I := 1 To Pd Do 
Begin 

TotTgtsKilled :- TotTgtsKilled + TgtsDeadOrlnRepair[Tgt,I]; 
End;  {For} 
If (TotTgts[Tgt] <> 0) Then 
Begin 

PropKilled := TotTgtsKilled / TotTgts[TgtJ; 
End;  {If} 
If ((TotTgts[Tgt] <> 0) And (PropKilled <= Goal[Class,Pd])) Then 
Begin 

Pdiff[Tgt,Pd] := Goal[Class,Pd] - PropKilled; 
End 
Else 
Begin 

Pdiff[Tgt,Pd] := 0.0; 
End;  {If} 

End;  {For} 
End;  {For} 

45 



End;  {Procedure GetPdiffValues} 

Function CalculateObjFcnValue (NumPeriods, NumTgtTypes, NumTgtClasses: Integer; 
TgtClassTgt: TgtClassTgtArray; 
TgtsInClass: TgtClassArray; 
Tvd: Real; 
Ppen: KillGoalArray; 
Pdiff: TgtValueArray; 
TvdWgt, GoalWgt: Real): Real; 

f 
Calculates objective function value for maximizing the weighted sum of TVD.  The 
Procedure does not actually maximize the value, it calculates the objective function 
value based on TVD gained for a replication of the simulation for which sorties were 
already assigned by the GAMS model, but the results of the sorties were decided 
randomly by this simulation. After the random results of the sorties, kill-goal 
achievement was determined, and then the resultant values for cumulative TVD collected 
and the pdiff values are passed to this Procedure, then the calculation proceeds as 
in the objective function contained in the GAMS model. 

Pre:  Number of periods, target types, and target classes present.  Target 
Class-Target correspondence data along with the number of target types in 
each class.  The target value destroyed which has been credited for the current 
replication of the simulation.  The objective function penalty for not meeting 
the kill-goal for each target class in each period.  The objective function 
weights for TVD and goal achievement. 

Post: CalculateObjFcnValue = Weighted sum of TVD 
} 
Var 

Pd, Tgt, Class: Integer; 
Penalty: Real; 

Begin  {Function CalculateObjFcnValue) 
Penalty := 0.0; 
For Pd := 1 To NumPeriods Do 
Begin 

For Tgt := 1 To NumTgtTypes Do 
Begin 

Class := GetTargetClass (Tgt, TgtClassTgt, TgtsInClass, NumTgtClasses); 
Penalty := Penalty + (Ppen [Class, Pd) * Pdiff[Tgt,Pd]); 

End;  {For} 
End;  {For} 
CalculateObjFcnValue :- (TvdWgt * Tvd) + (GoalWgt * Penalty); 

End;  {Function CalculateObjFcnValue) 
{ 

+** + + + + + * + + ** + + ■*'* + ** + *****+ Main Program **** + + ++** + + + * + *******+**** + *** 

The Main Program is used to assign input and output files, open and close 
input and output files, input all the necessary data from the input files, 
and output the data to the output file.  The Main Program is the only part 
of the simulation which reads and outputs data, the other Procedures and 
Functions are the ones which manipulate the data with regards to actually 
performing the simulation. This prevents having to instantiate too many 
array types when passing data from the Main Program to a Procedure or Function, 
which in turn would use up much too much memory since the array types defined 
are quite large! 

The only actual calculations done by the Main Program are for intermediate 
values which must be output for debug purposes or statistical data for the user. 
Comments are imbedded within the Main Program code below which indicates which 
lines should be kept or commented out based on user preference for the output 
generated by the debug lines of code, or to add or subtract output as the user 
sees fit. 

Main Variable definitions: 

Acft - counter variable for aircraft types. 
AcftLost - array of the cumulative number of aircraft lost for each aircraft type over 

the whole simulation run. 
AcftType - array of aircraft types actually flying sorties. 
Attr - losses per sortie (probability of attrition per sortie in the range [0,1]). 
B - probability of correct BDA for a target (B = BdaProb[Tgt]). 
BdaProb - array of the BDA probabilities for each target. 
BeforeTgtsDeadOrlnRepair - the number of targets of the target type dead or in repair 

just before the simulation routine is run for the next 
engagement against the target type. 

Ch - a Char type variable used for reading data from "tsvtst.dat" character by 

46 



character to get the real valued quantities and disregard the commas.  Used 
in conjunction with the variable 'St' as defined below. 

Class - counter variable for target classes. 
DataValRead - counter variable which keeps track of how many data values have been 

read in "tsvtst.dat" to determine which simulation variable to store 
the quantity in. 

DeadN - array of the current number of dead targets which ARE NOT restrikeable for 
each target type (dead forever). 

DeadR - array of the current number of dead targets which ARE restrikeable for each 
target type; the only possibility for these are to become dead forever (see 
DeadN above) when restruck. 

deltaTgtsKilled - difference between total targets of the target type killed after the 
simulation routine is run and BeforeTgtsKilled, i.e., the number of 
targets of the target type killed during the last particular run of 
the simulation routine. 

DistBandNum - counter variable for distance band numbers. 
Eks - expected kills per sortie for an aircraft type in a particular period. 
Goal - array of the proportion of targets in each target class to be killed to 

achieve the goals in each period. 
GoalWgt - objective function weight for goal achievement. 
I - counter variable for For loops. 
LiveN - array of the current number of live targets which ARE NOT restrikeable for 

each target type. 
LiveR - array of the current number of live targets which ARE restrikeable for each 

target type; these represent the number of targets which have just come out 
of repair in the planning cycle but may be restruck and returned to repair 
(see RegenN below), or become dead forever (see DeadN above). 

MaxLoss - array of the max loss allowed of each aircraft type. 
Nabort - probability there is no weather abort in flight for a particular aircraft 

type flying sorties against a particular target type. 
NB - probability of incorrect BDA for a target (NB = 1 - B). 
NPc - probability a target does not regenerate in the next planning cycle (NPc = 1 - Pc). 
NPr - probability the target is not repairable after a strike (NPr = 1 - Pr). 
NumAcft - array of the number of aircraft for each aircraft type starting. 
NumAcftTypes - number of aircraft types which will fly sorties. 
Number - temporary storage location for a real valued number. 
NumDays - number of days (planning cycles) per period. 
NumPeriods - number of periods the simulation is run over. 
NumTgtClasses - number of target classes. 
NumTgtsInBand - temporary storage location for the read in number of targets in a 

particular distance band. 
NumTgtTypes - number of target types encountered in "tgtval22.dat". 
Pc - probability a target regenerates in the next planning cycle. 
Pd - counter variable for periods. 
Pdiff - array of proportion of kills below the class goal for a particular target in 

a particular period. 
Ppen - array of objective function penalties for not meeting time-scripted goals 

for a target class by the end of a particular period (as contained in the 
Goal array). 

Pr - probability the target is repairable after a strike. 
RegenN - array of the current number of repairable targets which ARE NOT restrikeable 

for each target type. 
RegenR - array of the current number of repairable targets which ARE restrikeable for 

each target type; these may regenerate and become LiveR or remain RegenR 
during the regeneration phase, and then any RegenR may become RegenN or 
DeadN during the restrike phase. 

RepProp - array of the percent of killed targets that regenerate for each target; 
this is actually treated as a probability of repair in the Simulation. 

RepTime - array of the repair times for each target (repair times are in days). 
SimlnFile (1-4) - files to get input data from. 
SimOutFile - file to send output data to. 
SortieRate - array of sortie rates (sorties per aircraft per day) for each aircraft 

type. 
St - string type variable used for storing data read from "tsvtst.dat" so the real 

valued quantities can be picked out of the lines of data since there are 
imbedded commas as a result of the GAMS model output. 

StdDev - the standard deviation of the TVD obj fen values found over the number of 
replications performed. 

Sumv - sum of objective function values calculated for each replication of simulation. 
SumXl - holds the sum of the x(i)/s2 terms for the standard deviation calculation. 
SumX2 - holds the (sum of x(i))A2 term for the standard deviation calculation. 
Tempi - temporary storage location for a Real value when reading in data. 
Temp2 - temporary storage location for a Real value when reading in data. 
TempSumTgts - temporary storage location for summing number of targets as the number 

in particular distance bands is read in. 
TempTvd - temporary storage location for TVD value returned by simulation; to be added 

later to the total. 
Tgt - temporary storage for a target type number. 

47 



TgtClassTgt - array of target class-target correspondence. 
TgtElts - temporary storage location for the data field for target elements in input 

file "tgtdat22.dat"; not used for anything, just provides a way of skipping 
unwanted data fields to get to wanted ones. 

TgtsDeadOrlnRepair - array of cumulative number of targets dead or in repair for each 
target type BY PERIOD (not to be confused with the cumulative so far) 
over the whole simulation run; because of the nature of this variable, 
it may be possible that it has a negative quantity stored at the end 
of some periods (except the 1st period), however, the sum of these 
quantities over all periods, or just more than one period, will always 
be a positive value (or zero). 

TgtsInClass - array of the number of targets in each class. 
TgtVal - array of target values for all targets over all periods. 
TotSortiesFlown - total number of sorties flown over all aircraft and all days for the 

last simulation run. 
TotTgts - array of the total number of each type of target. 
Tvd - sum of TVD values returned by simulation for each aircraft type in each period. 
TvdWgt - objective function weight for TVD. 
v - objective function value for weighted sum of TVD. 
x - number of sorties flown for a particular aircraft type against a particular target 

type. 

***++*+*+* 

Lines of program code used for debug purposes only (which may also be useful to some 
users as a normal part of the program) are annotated with *** debug *** in comment 
brackets. Any variables specifically declared and needed for their execution are 
defined below.  These lines of code may be deleted or commented out without disturbing 
normal program execution, however, they must all either be deleted in their entirety or 
retained in their entirety because removal of only portions of *** debug *** code may 
disturb other portions retained if they relied on values obtained from the code that 
was removed. 

Debug Variable definitions: 

P - counter variable for For loops. 
PropKilled - cumulative proportion of targets of the target type killed. 
T - counter variable for For loops. 

Notes for below: 

(1) Have to read the aircraft types as seperate data and store them in an array, 
even though we know the number flying, because the types are not sequential, 
i.e., certain aircraft types may not be present in the GAMS model data for 
one reason or another. 

(2) Only desire certain data from "tsvtst.dat" (see comments at beginning of program), 
so any undesired data, i.e., not useful to the simulation run, is just dumped off 
into a temporary storage location, and then just discarded when another data item 
gets put there.  Only certain data within the first 12 quantities in "tsvtst.dat" 
is required, so rather than wasting time in reading to the end of each line of 
data, the first 12 items are read, the useful data extracted, and then the rest 
of the line skipped.  The GAMS model will always output data to tsvtst the same 
way, so this method of reading data will always apply. 

(3) This loop simply ensures that all the data meant to be output gets written to the 
output data file.  This is required since sometimes long programs will terminate 
normally, but not all data will be written to the output file if it is sent to one 
(this problem does not exist if output only goes to the screen, but it's hard to 
analyze data that way) .  The loop, therefore, slightly delays program termination 
so there is time for all data to get written to the output file. 

(4) The standard deviation will not be calculated or output unless at least 30 
replications are performed.  This is so it will have at least some meaning when it 
is calculated. 

(5) This limits the number of times the obj fen value is output for each replication to 
a maximum of 100 times, no matter how many replications are being done.  This is 
done to prevent the output file from growing larger than typical spreadsheet 
software can handle. 

} 
Var 

SimlnFilel, SimInFile2, SimInFile3, SimInFile4, SimOutFile: Text; 
Ch: Char; 
NumPeriods, NumAc ft Types, NumTgtTypes, NumTgtClasses: Integer; 
Tgt, Pd, DistBandNum, Acft, Class, I, TgtElts: Integer; 
NumTgtsInBand, TempSumTgts, NumDays, DataValRead: Integer; 
TotSortiesFlown, BeforeTgtsDeadOrlnRepair, deltaTgtsKilled: Integer; 
P, T: Integer;  {*** debug ***) 

48 



Attr, Tvd, TempTvd, v, Sumv, TvdWgt, Tempi, Number: Real; 
GoalWgt, Eks, Nabort, Temp2, x, Pr, NPr, Pc, NPc, B, NB: Real; 
SumXl, SumX2, StdDev: Real; 
PropKilled: Real;  {*** debug ***} 
TgtVal, Pdiff: TgtValueArray; 
TgtsDeadOrlnRepair: TgtKillArray; 
BdaProb, RepProp: TgtRealTypeArray; 
TotTgts, RepTime, LiveN, DeadN, RegenN, LiveR: TgtlntTypeArray; 
DeadR, RegenR: TgtlntTypeArray; 
AcftType, NumAcft, MaxLoss, AoftLost: AcftTypeArray; 
SortieRate: SortieRateArray; 
Goal, Ppen: KillGoalArray; 
TgtClassTgt: TgtClassTgtArray; 
TgtsInClass: TgtClassArray; 
St: StringType; 

Begin {Main Program) 
{ 

+ ■*■■*■* + + ■*■** + 

Use only one of the following two seed statements for seeding the random number generator. 
Comment the other one out. 
**■*■ ******* 

RandSeed := SEEDFORRANDNUMS;  {uses the Const declared seed so random nos. ARE repeated} 
{ Randomize;}  {takes a seed off the system clock so random nos. ARE NOT repeated} 
Assign (SimlnFilel, 'sim2in.dat'); 
Assign (SimInFile2, 'tgtval22.dat'); 
Assign (SimInFile3, 'tgtdat22.dat'); 
Assign (SimlnFilel, 'tsvtst.dat'); 
Reset (SimlnFilel); 
Reset (SimInFile2); 
Reset (SimInFile3); 
Reset (SimInFile4); 
Assign (SimOutFile, 'sim2out.csv'); 
Rewrite (SimOutFile); 

{ 

Read in target value data from "tgtval22.dat". 

NumTgtTypes := 0; 
While (Not (SeekEof(SimInFile2))) Do 
Begin 

Read (SimInFile2, Tgt); 
NumTgtTypes := NumTgtTypes + 1; 
For Pd := 1 To MAX>RMPERIODS Do 
Begin 

Read (SimInFile2, TgtVal[Tgt,Pd)); 
End;  {For) 
ReadLn (SimInFile2); 

End;  {While) 

********** 
Read in target data by distance band, total targets, bda probability, repair time, 
percent of killed targets that regenerate from "tgtdat22.dat". 
********** 

While (Not (SeekEof(SimInFile3))) Do 
Begin 

Read (SimInFile3, Tgt); 
TempSumTgts := 0; 
For DistBandNum := 1 To MAXNÜMDISTBANDS Do 
Begin 
Read (SimInFile3, NumTgtsInBand); 
TempSumTgts := TempSumTgts + NumTgtsInBand; 

End;  {For} 
TotTgts[Tgt] := TempSumTgts; 
Read (SimInFile3, TgtElts); 
Read (SimInFile3, BdaProb[TgtJ); 
Read (SimInFile3, RepTime[Tgt]); 
ReadLn (SimInFile3, RepProp[Tgt]) ; 

End;  {While} 

Read in simulation specific data from "sim2in.dat". 
********** 

} 

{ 

} 

{ 

} 
ReadLn (SimlnFilel, TvdWgt, GoalWgt); 

49 



ReadLn (SimlnFilel, NumPeriods, NumDays); 
ReadLn (SimlnFilel, NumAcftTypes) ; 
For Acft := 1 To NumAcftTypes Do 
Begin 

ReadLn (SimlnFilel, AcftType [Acft], NumAcft [AcftType [Acft] ] , MaxLoss [AcftType [Acft ] ], 
SortieRate[AcftType[Acft]]);  {** Note 1 **} 

End;  {For} 
ReadLn (SimlnFilel, NumTgtClasses); 
For Class := 1 To NumTgtClasses Do 
Begin 
Read (SimlnFilel, Tempi); 
For Pd := 1 To NumPeriods Do 
Begin 
Read (SimlnFilel, Goal[Class,Pd]); 

End;  [For] 
ReadLn (SimlnFilel); 

End;  (For) 
For Class := 1 To NumTgtClasses Do 
Begin 

Read (SimlnFilel, Tempi); 
For Pd := 1 To NumPeriods Do 
Begin 

Read (SimlnFilel, Ppen[Class,Pd]); 
End;  {For} 
ReadLn (SimlnFilel); 

End;  {For} 
For Class := 1 To NumTgtClasses Do 
Begin 

Read (SimlnFilel, Tempi); 
Tgt := 0; 
While (Not (SeekEoln(SimlnFilel))) Do 
Begin 

Tgt :- Tgt + 1; 
Read   (SimlnFilel,   TgtClassTgt[Class,Tgt]); 

End;     {While} 
TgtsInClass[Class]   :- Tgt; 
ReadLn   (SimlnFilel); 

End;      {For} 
{ ********** 
Start replication loop; begin reading data from "tsvtst.datB and run simulation. 
* * + * 4***4- + 

} 
Sumv := 0.0; 
SumXl := 0.0; 
SumX2 := 0.0; 

{ 

If you do not want the objective function value for each replication output to the 
output file in tabular format, comment out the next line.  If you want it in tabular 
format, don't comment it out, but then you must also choose the 2nd method of the two 
presented further below of outputting the replication and obj fen value (see ijnbedded 
comments below) . 

} 
{  WriteLn (SimOutFile,'"Replication"',',','"Obj FcnVal"');} 
For I := 1 To NUMBERREPS Do 
Begin 

{ ********** 
Next If..Then is +** debug ***.  These are the column headings for the major output 
statistics output showing the results of a particular replication simulation run. 
it********* 

} 
If ((I = REPOUTl) Or (I = REPOUT2) Or (I = REP0UT3) ) Then 
Begin 

If (I <> 1) Then 
Begin 
WriteLn (SimOutFile); 

End; 
WriteLn (SimOutFile,'"Replication"',',','"Period"',',','"Aircraft"',',', 

'"Target"',',','"Class"',',',*"EKS"',',',*"Nabort»',',•,'"Attr"',',•, 
'"Sorties", ', ', ' "TotSortiesFlown"', ', ', ' "SortieRate"', ', ', '"MaxLoss"' 
'"AcftLost"',', ', '"Kill Goal"',',','"PropKilled"',',','"Pr"',',', 
'"Pc"',',',*"B"',',",'"LiveN"',*,','"DeadN"',', •, •"RegenN"',',', 
'"LiveR"*,',','"DeadR"',',','"RegenR"',',*, "TotTgts"',*,', 
'"deltaTgtsKilled"', ', ', '"TgtsDeadOrlnRepair"', ', ', "TgtVal"', ', ', 
'"deltaTVD"',',','"TVD"*); 

50 



End;  (If) 
Reset (SimInFile4) ; 
St := "; 
Tvd := 0.0; 
For Acft := 1 To NumAcftTypes Do 
Begin 

AcftLost[AcftType[Acft]]   := 0; 
End;     {For} 
For Tgt := 1 To NumTgtTypes Do 
Begin 

LiveN[Tgt] := TotTgts[Tgt]; 
DeadN[Tgt] := 0; 
RegenN[Tgt] := 0; 
LiveR[Tgt] := 0,- 
DeadRITgt] := 0; 
RegenRtTgt] := 0; 
For Pd := 1 To NumPeriods Do 
Begin 

Pdiff[Tgt,Pd] := 1.0; 
TgtsDeadOrInRepair[Tgt,Pd] := 0; 

End;  {For} 
End;  {For} 
While (Not (SeekEof(SimInFile4))) Do 
Begin 

For DataValRead := 1 To 12 Do  {** Note 2 **} 
Begin 
Read (SimInFile4, Ch); 
While (Ch <> ',') Do 
Begin 

St := St + Ch; 
Read (SimInFile4, Ch); 

End;  {While} 
GetRealNumber (St, Number); 
Case DataValRead Of {** Note 2 **} 

2: Pd := Trunc(Number); 
4: Acft := Trunc(Number); 
6: Tgt := Trunc (Number) ; 
9: Eks := Number; 

10: Nabort := Number; 
11: Attr := Number; 
12: x := Number 

Else 
Tempi := Number;  {** Note 2 **} 

End;  {Case} 
St := "; 

End;  {For} 
Class := GetTargetClass (Tgt, TgtClassTgt, TgtsInClass, NumTgtClasses) ; 
TempTvd := 0.0; 
BeforeTgtsDeadOrlnRepair := DeadN[Tgt];}  {** debug alternative to next line **} 

BeforeTgtsDeadOrlnRepair := DeadNfTgt] + RegenN[Tgt] + DeadR[Tgt] + RegenRITgt]; 
deltaTgtsKilled := 0; 
TotSortiesFlown := 0;  {** Data purposes only **} 
Pr := RepProptTgtj; 
NPr := 1 - Pr; 
Pc := 1 - Exp(-(1 / RepTime[TgtJ)); 
NPc :- 1 - Pc; 

{ 
+ + + + + + -Jr-Jr + * 

If you want to test the case of perfect BDA, i.e., no restrikes will occur, then remove 
comments from next line and comment out the line after next.  If you choose perfect BDA 
for the B probability assignment here, you must also choose the same option for the NB 
probability immediately following the B probability assignment code lines. 
********** 

} 
{     B := 1.0;}  {** Perfect BDA **} 

B := BdaProb[TgtJ;  {** Imperfect BDA **} 
{ 

If you chose to test the case of perfect BDA, then remove comments from next line and 
comment out the line after next. 

} 
{     NB := 0.0;}  {** Perfect BDA *+} 

NB :*= 1 - B;  {** Imperfect BDA **} 
RunSimulation (NumDays, NumAcft[Acft], MaxLoss[Acft], SortieRate[Acft], 

AcftLost[Acft], TotTgts[Tgt], TgtVal[Tgt,PdJ, Goal[Class,Pd), 
Eks, Nabort, Attr, x, TotSortiesFlown, Pr, NPr, Pc, NPc, B, NB, 
LiveN[Tgt], DeadN[Tgt), RegenN[Tgt], LiveR[Tgt], DeadR[Tgt], 

51 



RegenRITgt], deltaTgtsKilled, TempTvd); 
Tvd := Tvd + TempTvd; 
TgtsDeadOrInRepair[Tgt,Pd] := TgtsDeadOrInRepair[Tgt,Pd] + ((DeadN(Tgt] + 

RegenNtTgt] + DeadR[Tgt) + RegenRITgt]) - 
BeforeTgtsDeadOrlnRepair); 

{     PropKilled := DeadN[Tgt] / TotTgts[Tgt];}  {** debug alternative to next line **} 
PropKilled := (DeadN[Tgt] + RegenN[Tgt] + DeadR[Tgt] + RegenRITgt]) / 

TotTgts[Tgt];  {*** debug ***} 
f ********** 
Next If..Then is *** debug ***.  These are the major output statistics showing the 
results of a particular replication simulation run. 
* 44-******* 

) 
If ((I = REP0UT1) Or (I = REP0UT2) Or (I = REP0UT3)) Then 
Begin 

WriteLn   (SimOutFile, I, ', ',Pd, ', \Acft, ', '»Tgt, ',',Class, ', ',Eks:9:4, ', ', 
Nabort:9:4,',',Attr:9:4,',',x:9:4, ', ', TotSortiesFlown,*,', 
SortieRate[Acft] :9:4, ', ' ,MaxLoss [Acft], ', * ,AcftLost [Acft], ', ', 
Goal[Class,Pd]:9:4,',',PropKilled:9:4, ', ',Pr:9:4,',',Pc:9:4,', ', 
B:9:4,',*,LiveN[Tgt],',',DeadN[Tgt], ',' ,RegenN[Tgt],', ', 
LiveRITgtJ,',',DeadR[Tgt],','»RegenRITgt],','.TotTgts[Tgt],',*, 
deltaTgtsKilled,',',TgtsDeadOrInRepair[Tgt,Pd],','»TgtVal[Tgt,Pd]:9:4,',', 
TempTVD:9:4,*,',Tvd:9:4); 

End;     [If] 
St   :=   "; 
ReadLn (SimInFile4); 

End;  {While (Not (SeekEof(SimInFile4)))] 
{ ********** 
Next If..Then is *+* debug ***.  This just outputs a blank line to seperate blocks of 
output data in the output file. 
********** 

} 
If ((I = REP0UT1) Or (I = REP0UT2) Or (I = REP0UT3)) Then 
Begin 
WriteLn (SimOutFile); 

End;  {If) 
GetPdiffValues (NumPeriods, NumTgtTypes, NumTgtClasses, TgtsDeadOrlnRepair, TotTgts, 

TgtClassTgt, TgtsInClass, Goal, Pdiff); 
{ ********** 
Next If..Then is *** debug ***.  This outputs the pdiff values for each target type by 
period. 
********** 

} 
If ((I = REP0UT1) Or (I = REP0UT2) Or (I - REP0UT3) ) Then 
Begin 
WriteLn (SimOutFile, * "Period"', *,', "Target",',', '"Pdiff"') ; 
For P := 1 To NumPeriods Do 
Begin 

For T := 1 To NumTgtTypes Do 
Begin 
WriteLn (SimOutFile,P,',',T,',',Pdiff[T,P]:9:4); 

End; 
End; 
WriteLn (SimOutFile); 

End;  {If] 
Temp2 := CalculateObj Fen Value (NumPeriods, NumTgtTypes, NumTgtClasses, TgtClassTgt, 

TgtsInClass, Tvd, Ppen, Pdiff, TvdWgt, GoalWgt); 
Sumv := Sumv + Temp2; 
SumXl := SumXl + Sqr(Temp2); 
SumX2 := SumX2 + Temp2; 

{ ********** 
If you do not want the objective function value for each replication output to the 
output file, comment out the 2 WriteLn statements in the next If. .Then. Otherwise, 
choose one based on your preferred method of having it output, but only choose the 2nd 
one if you chose to leave in the tabular format for the output from above. 
********** 

} 
If (I <= 100) Then  {** Note 5 +*} 
Begin 
WriteLn (SimOutFile,'"Replication:"',',',!,',', '"ObjFcnVal:"',',',Temp2:15:4); 

{     WriteLn (SimOutFile,I,',',Temp2:15:4);} 
End;  {If} 

End;  {For replication loop) 
v := Sumv / NUMBERREPS; 

52 



If (NUMBERREPS >- 30) Then  {** Note 4 **} 
Begin 

StdDev : = Sqrt ( (SumXl - (Sqr(SumX2) / NUMBERREPS)) / (NUMBERREPS - 1)); 
End;  {If) 
WriteLn (SimOutFile);  {* + * debug ***} 
WriteLn (SimOutFile); {***  debug ***) 

{ 
**■*■■*■*** + + * 

Pick one of the next two statements to output the number of replications.  Pick the 
first one if you want to output to the screen only, pick the second one if you want to 
output to the output file, then comment the other one out. ********** 

) 
{  WriteLn ('Number of Replications:  '.NUMBERREPS);) 
WriteLn (SimOutFile, '"Number'", ', ', '"of', ', ', '"Replications:  "', ', '»NUMBERREPS) ; 
WriteLn (SimOutFile); 

{ 

Pick one of the next two statements to output the objective function value.  Pick the 
first one if you want to output to the screen only, pick the second one if you want to 
output to the output file, then comment the other one out. 
********** 

} 

{  WriteLn ('Objective Function Value (v: weighted sum of TVD) :  *,v:15:4);} 
WriteLn (SimOutFile,'"Objective"',',','"Function"',',', '"Value"',',','"(v :"',',', 

'"weighted"',', ','"sum of"',',', '"TVD):"',',r,v:15:4); 
WriteLn (SimOutFile); 

( ********** 
Pick one of the two WriteLn statements in the following If..Then to output the standard 
deviation.  Pick the first one if you want to output to the screen only, pick the second 
one if you want to output to the output file, then comment the other one out. 
•Ifk-k-le-tr^c-lftflc-i/ 

) 
If (NUMBERREPS >= 30) Then  {** Note 4 **} 
Begin 

{   WriteLn ('Standard Deviation:  ',StdDev:15:4);) 
WriteLn (SimOutFile,'"Standard"',',','"Deviation:"', ', ', StdDev:15:4); 

End;  (If) 
{ 

■*■■*■ + + *■*•** + + 

If you are NOT sending output to the output file, comment out the following For loop. 

) 
For I := 1 To 50 Do 
Begin 
WriteLn (SimOutFile); 

End; {For} {** Note 3 **} 
Close (SimlnFilel); 
Close (SimInFile2); 
Close (SimInFile3); 
Close (SimInFile4); 
Close (SimOutFile); 

End.  {Main Program) 

53 



The following is the data file "sim2in.dat" used by SimStrike. The format must 
remain exactly as shown below, however, the data may change of course, but must be 
representative of the items explained below. Note: Do not include the comments in "{}" 
shown in the listing below. These are merely for explanatory purposes within this 
Appendix only. They do not exist in the actual file, nor should they be included. 

9.0   -1.0 {TVDWGT, GOALWGT} 
5     12  {no. of periods, no. of days in each period} 
9        {no. of aircraft types which will actually be flying sorties} 
{Next 9 lines (because there are 9 aircraft types actually flying 
sorties in this case) are in the following data format: 
aircraft type, no. of aircraft type starting, max. loss allowed for this 
aircraft type, sortie rate (sorties per aircraft per day) for this 
aircraft type} 
1 96 8 1.48 
2 72 4 .6 
3 16 1 .6 
4 12 1 .6 
6 36 2 .9 
7 102 8 1.09 
8 129 7 1.29 
9 165 9 1.39 
10 72 4 .48 
10 { numbe r of targ 
{Next 10 lines (10 target classes) are in the following data format: 
target class, proportion of targets in target class to be killed to 
achieve the kill goal for each time period up to the number of periods 
over which SimStrike is to be run} 
1 .4 .55 .7 1.0 1.0 
2 .35 .6 .9 1.0 1.0 
3 1.0 1.0 1.0 1.0 1.0 
4 .75 .95 1.0 1.0 1.0 
5 .8 .95 1.0 1.0 1.0 
6 1.0 1.0 1.0 1.0 1.0 
7 .2 .4 .75 1.0 1.0 
8 .25 .35 .5 1.0 1.0 
9 1.0 1.0 1.0 1.0 1.0 
10 .4 .4 .8 .8 1.0 
{Next 10 lines (10 target classes) are in the following data format: 
target class, objective function penalty for not meeting the time- 
scripted kill goal for the target class by the end of the period for 
each period} 
1 64 64 16 16 64 
2 16 16 64 64 16 
3 1 1 1 1 1 
4 16 16 16 16 16 
5 64 64 64 64 64 
6 64 64 16 16 4 
7 4 4 64 64 64 
8 1 1 1 1 16 
9 4 4 64 64 16 
10 16 16 16 16 16 
{Next 10 lines (10 target classes) are in the following data format: 

54 



target class, listing of targets which belong to the target class (this 
is known as target class-target correspondence in TIME STRIKE)} 
1 8 16 17 19 37 38 61 65 66 69 70 76 
2 14 15 18 20 21 25 29 30 32 36 39 41 42 46 60 62 63 64 67 68 74 75 
3 55 56 57 58 
4 3 4 5 6 7 10 11 12 28 47 48 71 72 
5 49 50 51 77 78 
6 22 26 54 
7 23 24 
8 9 13 27 31 40 43 44 45 59 73 
9 33 34 35 
10 1 2 52 53 79 80 81 82 83 84 85 86 87 

This is the end of the file "sim2in.dat". Do not leave any blank lines at the end of 
the file, except for one position for the end-of-file marker. As long as the copy of this 
file provided with the original form of SimStrike is used as a template for changing the 
data contained in it, errors can be prevented. 

55 



56 



APPENDIX B: SAMPLE OUTPUT 

The sample output on the following pages is the result of a run of SimStrike using 
the model data set provided by Maj. Kirk Yost, USAF, as mentioned in Chapter n. It is 
the exact output produced by the program listing in Appendix A. One-thousand 

replications were done, with only one-hundred objective function results shown so the 
output file would be limited in size so as not to present problems when opening in the 
editor of a spreadsheet application (this is also eluded to in the comments within the 
program listing). The final results are on the last page of the sample output. 

A detailed replication instance is shown for replication number one. The column 
headings for the most part are the same name as the variable they represent in SimStrike. 
In any event, the headings are self-explanatory as to what statistic they represent. These 
headings can be more easily understood, however, if the corresponding variable 
definitions in the comments just prior to the main program part of SimStrike are referred 
to. 

Also, as mentioned in Appendix A, this output can be modified to take different 
forms based on the preference of the user. Please refer to the comments imbedded in the 
main program part of the program listing to change the output format as desired. 

57 



A B c       I      D      1    e F 0 H I J K L M N O 
1 Replication Period Aircraft Target Class EKS Nabort Attr Sorties TotSortiesFlown SortieRate MaxLoss AcfO-Ost Kill Goal PropKilled 
2 2 4 7.83 0.0105 1.127 1 0.6 0 0.75 0.7 
3 2 75 2 9.41 0.0138 0.387 1 0.6 0 0.35 0.1429 
4 2 e 4 7.6 0.0094 1.161 2 0.8 0 0.75 0.7 
S 2 35 9 7.22 0.0133 0.328 2 0.6 0 1 0.2549 
6 3 25 2 0.48 0.0001 39.315 41 0.6 0 0.35 0.1282 
7 3 45 8 0.49 0.0001 38.793 37 0.8 0 0.25 0.2444 
8 3 78 5 1.92 O.O0O2 14.397 13 0.6 0 0.8 0.5417 
9 3 23 7 0.96 0.0002 11.781 12 0.6 0 0.2 0.1923 

10 3 42 2 0.78 0.0001 12.884 14 0.6 0 0.35 0.3333 
11 4 40 8 5.55 0.8185 0.0058 1.257 2 0.6 0 0.25 0.1905 
12 4 79 10 5.52 0.8185 0.0014 2.167 2 0.6 0 0.4 0.3529 
13 4 28 4 1.02 0 6 1C 0.6 c 0.75 0.06« 
14 4 7 4 9.39 0 0.846 0 0.6 0 0.75 0 
15 4 28 4 0.72 0 2.052 0 0.6 0 0.75 0.0616 
16 6 33 9 0.95 0.7685 0.002 96.383 101 0.9 2 0 1 0.9273 
17 6 26 6 1.72 0.0004 70.527 71 0.9 2 c 1 0.5841 
18 6 36 2 0.88 0.0004 13.56 14 0.9 2 0 0.35 0.0701 
1» e 36 1 4.95 0.0003 45.515 43 0.9 2 c 0.4 0.3321 
20 6 59 8 095 0.0OO5 2788 3 0.9 2|            0 0.25 0.2222 
21 6 37 1 188 0.0004 41.043 42 0.9 2 0 0.4 0.396 
22 6 41 2 1.8 0.0004 115.318 117 0.9 2 0 0.35 0.34 
23 7 12 4 1.71 0.8596 0.0072 48.284 48 1.09 8 0 0.75 0.8341 
24 7 34 9 0.56 0.B596 0.0444 34.071 34 1.09 8 0 1 0.819 
2S 7 26 6 2.75 0.0055 2.995 1 1.09 8 0 1 0.4425 
28 8 1 10 3.85 0.0049 55.083 55 1.29 7 1 0.4 0.3861 
27 8 18 2 0.88 0.0045 50.231 49 1.29 7 2 0.35 0.3409 
28 8 20 2 0.54 0.0037 19.341 17 1.29 7 2 0.35 0.2083 
29 8 25 2 0.95 0.0041 43.311 43 1.29 7 2 0.35 0.3482 
30 8 27 8 0.21 0.0043 52093 52 1.29 7 2 0.25 0.2432 
31 8 30 2 0.82 0.0029 19.031 19 1.29 7 2 0.35 0.2983 
32 8 35 9 0.91 0.0045 83.881 55 1.29 7 3 1 1 
33 8 36 2 0.86 00039 58.674 54 1.29 7 3 0.35 0.3439 
34 8 39 2 0.94 0.0038 141.454 142 1.29 7 4 0.35 0.3478 
35 8 46 2 0.78 0.0048 29.483 29 1.29 7 4 0.35 0.3171 
38 8 51 5 1.75 0.005 3.592 4 1.29 7 4 0.8 0.8 
37 8 52 10 0.84 0.0086 1.381 1 1.29 7 4 0.4 0 

*P 6 73 8 0.95 0.0043 43.018 44 1.29 7 4 0.25 0.2255 
39 8 26 e 1.84 0.0023 13.897 15 1.29 7 4 1 0.5929 
40 8 17 1 8.85 0.9502 0.0055 20.343 19 1.29 7 4 0.4 0.2982 
41 8 64 2 5.93 0.9502 0.0055 2.863 3 1.29 7 4 0.35 0.3333 
42 8 ee 1 5.93 0.9502 0.0055 10.61 11 1.29 7 4 0.4 0.271 
43 8 68 2 6.38 0.9502 0.0053 2.097 3 1.29 7 4 0.35 0.3077 
44 8 70 1 5.93 0.9502 0.0055 8.23 11 1.29 7 4 0.4 0.3855 
45 8 49 5 3.4 0.004 2.124 1 1.29 7 5 0.8 0 
46 8 50 5 3.38 0.0037 4.7 2 1.29 7 5 0.8 0.2727 
47 8 53 10 3.57 0.0055 11.077 12 1.29 7 6 0.4 0.3478 
48 8 62 2 3.81 0.0042 7.313 7 1.29 7 6 0.35 0.25 
49 8 77 5 36 0.0057 48.006 2 1.29 7 7 0.8 0.027 
50 9 8 1 1.66 0.0051 1.701 1 1.39 9 0 0.4 0.3333 
51 9 22 6 1.65 0.0035 163.118 163 1.39 9 1 0.8725 
52 10 4 4 0.38 0.0037 15.084 16 0.48 4 0.75 0.1429 
53 10 15 2 0.71 0.0056 59.693 80 0.48 4 0.35 0.268 
54 10 43 8 1.29 0.0054 0.483 0 0.48 4 0.25 0 
55 10 78 1 8.85 0.9502 0.0055 0.198 0 0.48 4 0.4 0 
58 2 1 19 1 1.88 0.7665 0.0023 280.152 282 1.48 8 0 0.55 0.5119 
37 2 1 61 1 1.86 0.7865 0.O023 14.88 14 1.48 8 0 0.55 0.5185 

»• 2 2 5 4 7.83 0.0016 0.367 0 0.6 4 0 0.95 0.7 
39 2 2 75 2 9.41 0.0021 0.329 1 0.6 4 0 0.6 0.1429 
60 2 3 25 2 0.48 0 82611 81 0.8 1 0 0.6 0.5192 
81 2 3 45 8 0.49 0 24.886 25 0.6 1 0 0.35 0.3333 
62 2 3 78 5 1.92 0 4.964 7 0.6 1 0 0.95 0.875 
S3 2 3 23 7 0.96 0 12.278 12 0.8 1 0 0.4 0.3846 
6« 2 3 42 2 0.78 0 10.379 10 0.6 1 0 0.6 0.5833 
83 2 4 52 10 5.47 0.8185 0.0023 0.036 0 0.8 1 0 0.4 0 
66 2 4 3 4 5.53 0.8185 0.0015 9.16 11 0.6 1 0 0.95 0.178 
67 2 4 7 4 9.39 0 0.275 0 0.6 1 0 0.95 0 
68 2 8 2°, 2 054 0.0001 16.657 16 0.9 2 0 0.8 0.4167 
69 2 6 36 1 4.95 0 18.298 20 0.9 2 0 0.55 0.4511 
70 2 6 43 8 1.29 O.00O1 0.228 0 0.9 2 0 0.35 0 
71 2 e 59 8 0.95 0.0001 1.278 0 0.9 2 0 0.35 0.2222 
72 2 e 41 2 1.8 0.0001 88.335 87 0.9 2 0 0.6 0.5887 
73 2 e 50 5 1.89 0.0001 4.371 4 0.9 2 0 0.95 0.5455 
74 2 e 77 5 1.81 0.0001 34.785 35 0.9 2 0 0.95 0.277 
73 2 7 37 1 1.48 0.0019 25.024 24 1.09 8 0 0.55 0.5369 
78 2 7 26 8 4.01 0.0014 11.203 10 1.09 8 0 1 0.7168 
77 2 7 35 9 1.79 0.8596 0.0016 2.797 0 1.09 8 0 1 1 
76 2 7 36 2 1.79 0.8598 0.0014 30.821 32 1.09 8 0 0.6 0.5987 
79 2 7 39 2 1.79 0.8596 0.0014 9.488 9 1.09 8 0.6 0.3659 
80 2 7 40 8 1.79 0.8596 0.002 1.841 2 1.09 8 0.35 0.3333 
81 2 7 48 2 1.79 08596 0.0017 14.798 17 1.09 8 0.8 0.4878 
82 2 7 12 4 1.71 0.8596 0.0012 16.214 17 1.09 8 0.95 0.878 
83 2 7 33 9 0.87 0.8598 0.0017 23.921 8 1.09 8 1 1 
84 2 7 54 8 0.9 0.8596 0.0014 20.312 19 1.09 8 1 1 
85 2 7 60 2 8.83 0.9502 0.002 3.582 4 1.09 8 0.6 0.3704 
86 2 7 84 2 9.5 0.9502 0.0021 1.589 3 1.09 8 0.8 0.5758 
87 2 7 66 1 8.84 0.9502 0.002 3.914 1 1.09 8 0.55 0.3271 
88 2 7 68 2 9.5 0.9502 0.0021 1.252 1 1.09 8 0.6 0.2692 
89 2 7 74 2 8.32 0.9502 0.0017 3.116 3 1.09 8 0.6 0.5238 
90 2 7 79 10 2.71 0.9502 O.0018 0.598 1 1.09 8 0.4 0.3529 
91 2 8 6 1 1.68 1 0.0008 0.738 0 1.29 7 7 0.55 0.3333 
92 2 8 18 2 0.88 1 0.00O7 51.202 0 1.29 7 7 0.8 0.25 
83 2 8 25 2 0.95 1 0.0006 17.845 0 1.29 7 7 0.6 0.5 
94 2 8 39 2 0.94 1 0.00O6 101.314 0 1.29 7 7 0.6 0.3859 

58 



P   1     Q R S T u V w X Y Z AA AB AC AD 

1 Pr >c 3 jveN DeadN togenN jwR DeadR RegenR TotTsts deltaTfltsKiiled TgtsDeadOrlnRepair TfltVal deltaTVD TVO 
2 0 0.0019 0.8 3 7 0 0 0 0 10 7 7 7 49 49 
3 0.25 0.8321 0.7 5 0 0 1 1 0 7 2 1 14.2 14.2 63.2 
4 0 0.0019 0.8 3 7 0 0 0 0 10 7 7 22.6 158.2 221.4 
5 0.25 0.0055 0.8 38 7 4 0 2 0 51 14 13 31.7 412.1 833.5 
S 0.25 0.0185 0.9 136 18 2 0 0 0 156 20 20 9.1 182 815.5 
r 0.5 0.2635 0.8 34 8 3 0 0 0 45 13 11 36 396 1211.5 
8 0.25 0.011 0.6 11 11 2 0 0 0 24 13 13 55.5 721.5 1933 
9 0.5 0.0028 0.8 42 5 5 0 0 0 52 10 10 15.8 158 2091 
10 0.25 0.0185 0.6 16 8 0 0 0 0 24 8 8 5.6 44.8 2135.8 

11 0.5 0.0028 0.9 17 2 2 0 0 0 21 5 4 8.1 32.4 2168.2 
12 0.25 0.011 0.6 11 3 1 0 1 1 17 6 6 58.3 3498 2518 
13 0.5 0.011 0.8 137 6 3 0 0 0 146 8 9 3.5 31.5 2549.5 
14 0 0.0019 0.8 9 0 0 0 0 0 9 0 0 22.6 0 2549.5 
19 0.5 0.011 0.8 137 6 3 0 0 0 146 0 9 3.5 31.5 2581 
16 0.5 0.0019 0.6 4 27 24 0 0 0 55 51 51 30.5 1555.5 4138.5 
17 0.5 0.0952 0.8 47 41 23 0 1 1 113 87 66 55.8 3682.8 7819.3 
IS 0.25 0.0165 0.9 146 7 4 0 0 0 157 11 11 5.3 58.3 7877.6 

1» 0 0.CO19 0.9 348 173 0 0 0 0 521 173 173 8.5 1470.5 93481 
20 0 0.0019 0.8 7 2 0 0 0 0 9 2 2 1.5 3 8351.1 
21 0.5 0.0019 0.7 90 29 29 0 0 1 149 58 58 17 1003 10354.1 
22 0.25 0.0028 0.9 361 144 39 0 3 0 547 187 186 5.6 1041.6 11395.7 
23 0.5 0.011 0.9 30 33 18 0 0 1 82 54 52 3.2 166.4 11562.1 
24 0.5 0.0019 0.6 8 4 8 0 1 0 21 13 13 39.6 514.8 12076.9 
25 0.5 0.0952 0.8 63 43 7 0 0 0 113 0 50 55.8 2790 14868.9 
26 0.125 0.1331 0.6 221 130 2 0 6 1 360 143 139 21.6 30024 17868.3 
27 0.5 0.1331 0.8 58 20 10 0 0 0 88 33 30 11.4 342 18211.3 
20 0.25 0.0689 0.8 19 4 1 0 0 0 24 5 5 14.9 74.5 18285.8 
29 0.25 0.0185 0.9 102 51 3 0 0 0 156 36 54 9.1 491.4 18777.2 
30 0.25 0.0055 0.8 28 8 1 0 0 0 37 9 9 26.5 238.5 19015.7 
31 0.5 0.6321 09 19 7 0 0 1 0 27 11 8 6 48 18063.7 
32 0.25 0.0055 0.8 0 35 16 0 0 0 51 38 51 31.7 1616.7 20680.4 
33 0.25 0.0165 0.9 103 40 14 0 0 0 157 43 54 5.3 288.2 20866.8 
34 0.125 0.6321 0.7 180 85 0 0 1 0 276 101 86 6.3 604.8 21571.4 
35 0.5 0.2835 0.8 28 10 3 0 0 0 41 21 13 10 130 21701.4 
3« 0.25 0.2835 0.6 1 4 0 0 0 0 5 4 4 55.5 222 21923.4 
37 0 0.0019 0.6 2 0 0 0 0 0 2 0 0 58.3 0 21923.4 
38 0.5 02635 0.8 79 19 3 0 0 1 102 S3 23 40.8 938.4 22861.8 
39 0.5 0.0952 08 48 55 12 0 0 0 113 23 67 55.8 3738.6 26800.4 
40 0.25 0.1331 0.8 233 79 18 0 2 0 332]                   107 99 8.5 841.5 27441.9 
41 0.25 0.1331 0.7 22 10 1 0 0 0 33 11 11 14.5 159.5 27601.4 
42 0.25 0.1331 0.7 76 25 4 0 0 0 107 30 29 14.2 411.8 26013.2 
43 0.25 0.1331 0.7 18 8 1 0 1 0 26 10 8 17.3 138.4 28151.6 
44 0.25 0.1331 0.7 51 26 4 0 1 1 83 34 32 17.3 553.8 28705.2 
45 0.5 0.2835 0.6 5 0 0 0 0 0 5 0 0 52.4 0 28705.2 
46 0.5 0.2835 0.6 8 3 0 0 0 0 11 4 3 52.4 157.2 28662.4 
47 0.5 O.0O19 0.8 45 13 9 0 1 1 69 24 24 49.8 1195.2 30057.6 
48 0.25 0.0019 0.8 48 15 1 0 0 0 64 16 16 22.8 361.8 30419.2 
49 0.25 0.0328 0.6 144 2 1 0 1 0 148 4 4 52.6 210.4 30629.6 
SO 0 0.0019 0.8 4 2 0 0 0 0 6 2 2 4.8 9.6 30639.2 
»1 0.5 0.6321 0.7 19 113 13 0 3 1 149 211 130 40 5200 35839.2 
52 0.25 0.0952 0.8 42 7 0 0 0 0 49 7 7 30.1 210.7 36048.9 
53 0.25 0.1331 0.8 69 18 5 0 2 0 94 31 25 14.2 355 38404.9 
54 0.25 0.0185 0.8 2 0 0 0 0 0 2 0 0 0.9 0 38404.8 

P5 0.25 0.6321 0.8 3 0 0 0 0 0 3 0 0 11.4 0 38404.9 
5« O.S 0.1331 0.8 247 180 72 0 3 4 506 330 259 17 4403 40607.9 
57 0 0.0019 06 13 13 0 0 1 0 27 14 14 22.7 317.8 41125.7 
58 0 0.0019 0.8 3 7 0 0 0 0 10 0 0 59 41.3 41167 
59 0.25 0.6321 0.7 6 1 0 0 0 0 7 0 0 28.4 28.4 41195.4 
60 0.25 0.0165 0.9 75 69 10 0 1 1 156 29 27 18 1458 42653.4 
61 0.5 0.2835 0.8 30 15 0 0 0 0 45 10 4 35.9 538.5 43191.9 
62 0.25 0.011 0.6 3 17 2 0 1 1 24 6 8 422 886.2 44078.1 
63 0.5 0.0028 0.9 32 12 8 0 0 0 52 10 10 28.5 570 44848.1 
64 0.25 0.016S 0.8 10 14 0 0 0 0 24 6 6 8.8 123.2 44771.3 

Vs 0 0.0019 0.8 2 0 0 0 0 0 2 0 0 47.8 0 44771.3 
66 0.25 0.0952 0.8 103 20 2 0 0 0 125 26 22 20.4 448.8 45220.1 
67 0 0.0019 0.8 6 0 0 0 0 0 9 0 0 15.1 0 45220.1 
68 0.25 0.0689 08 14 9 1 0 0 0 24 6 5 29.5 295 45515.1 

«8 0 0.0019 0.9 266 235 0 0 0 0 521 62 82 17 3995 49510.1 
70 0.25 0.0165 0.8 2 0 0 0 0 0 2 0 0 1.5 0 49510.1 
7} 0 0.0019 0.8 7 2 0 0 0 0 9 0 0 3 6 49516.1 
72 0.25 0.0028 0.9 22S 252 69 0 0 547 137 136 8.8 2833.6 52349.7 
73 0.5 0.2835 0.6 5 6 0 0 0 11 3 3 36 216 52565.7 
74 0.25 0.0328 0.6 107 35 5 0 0 148 39 37 36.5 1498.5 54062.2 
75 0.5 0.0019 0.7 69 42 37 0 1 148 21 21 34.1 2728 56780.2 
76 0.5 0.0952 0.8 32 66 13 0 1 113 28 14 34.2 2770.2 59560.4 
77 0.25 0.0055 0.8 0 35 18 0 0 51 0 0 37.2 1897.2 61457.6 
78 0.25 0.0165 0.9 63 65 29 0 0 157 40 40 8.3 780.2 62237.8 
79 0.125 0.6321 0.7 175 100 0 0 0 276 6 5 9.8 989.8 63227.6 
80 0.5 0.0028 0.8 14 4 3 0 0 21 3 3 124 86.8 63314.4 
81 0.5 0.2835 0.8 21 17 2 0 0 41 19 7 18.3 386 63700.4 
82 0.5 0.011 0.9 10 44 28 0 0 0 82 22 20 2.5 180 63880.4 
83 0.5 0.0019 0.6 0 29 28 0 0 0 55 4 4 33.7 1853.5 65733.9 
84 0 0.0019 0.6 0 11 0 0 0 0 11 11 11 55.7 612.7 68346.6 
S3 0.5 0.1331 0.8 17 7 3 0 0 0 27 14 10 39.8 398 68744.8 
86 0.25 0.1331 0.7 14 18 1 0 0 0 33 10 8 28.9 549.1 67293.7 
87 0.25 0.1331 0.7 72 31 2 0 2 0 107 9 6 28.4 994 68287.7 
88 0.25 0.1331 0.7 19 7 0 0 0 0 26 0 -1 34.5 241.5 685292 
89 0.25 0.6321 0.7 10 9 0 0 1 1 21 12 11 227 249.7 68778.9 
90 0.25 0.011 0.6 11 5 1 0 0 0 17 0 0 47.8 2S6.8 69065.7 
91 0 O.0O18 0.8 4 2 0 0 0 0 6 0 0 3.7 7.4 69073.1 
92 0.5 0.1331 0.8 66 20 2 0 0 0 88 0 -8 227 499.4 685725 
93 0.25 0.0185 0.9 77 69 8 1 1 0 156 0 24 18 1404 70976.5 
34 0.125 0.8321 0.7 175 10C 0 c 1 0 27! 0 5 8.8 989 8 i   719883 

59 



A B C D e F O H 1 J K L M N o 
99 2 s 51 5 1.75 0.0007 1.304 0 1.29 7 7 0.95 0.8 
96 2 8 73 8 0.95 0.0006 29.072 0 1.29 7 7 0.35 0.1883 
97 2 8 17 1 8.85 0.9502 0.0008 10.87 0 1.29 7 7 0.55 0.256 
98 2 8 70 1 5.93 0.9502 0.0008 4.526 0 1.29 7 7 0.55 0.3253 
99 2 3 S3 10 3.57 0.0008 1.658 0 1.29 7 7 0.4 0.3476 

100 2 8 «2 2 3.61 o.oooe 5.685 0 1.29 7 7 0.6 0.2S 
101 2 9 1 10 3.85 0.0007 8.889 8 1.39 9 1 0.4 0.4 
102 2 B 22 8 1.65 0.0005 37.894 39 1.39 9 1 1 1 

in 2 9 76 1 8.85 0.9502 0.0008 0.097 0 1.39 9 1 0.55 0 
104 2 9 49 5 3.4 0.0006 0.988 2 1.39 9 1 0.95 0.4 
10S 2 10 6 4 0.95 0.0005 3.023 2 0.48 4 1 0.95 0.8 
106 2 10 15 2 0.71 0.0006 52149 52 0.48 4 1 0.6 0.5319 
107 3 1 19 1 1.88 0.7885 00022 161.862 162 1.48 8 0 0.7 0.6917 
108 3 1 61 1 1.88 0.7885 0.0022 6.184 9 1.48 8 0 0.7 0.8867 
109 3 2 5 4 7.83 0.0016 0.097 1 0.6 4 0 1 1 

110 3 2 75 2 9.41 0.0021 0.378 0 0.8 4 0 0.9 0.1429 

111 3 3 25 2 0.48 0 50.588 53 0.6 0 0.9 0.6218 
112 3 3 45 8 0.49 0 29.044 27 0.6 0 0.5 0.4889 
113 3 3 78 5 1.92 0 1.837 3 0.8 0 1 1 
114 3 3 23 7 0.96 0 21.305 22 0.8 0 0.75 0.7115 
115 3 3 42 2 0.78 0 12327 12 0.6 0 0.9 0.875 
116 3 4 52 10 5.47 0.8185 0.0023 0.26 0 0.6 0 0.8 0 
117 3 4 7 4 9.39 0 0.073 0 0.6 0 1 0 
118 3 e 6 4 0.95 0.0001 0.797 1 0.9 2 0 1 0.8 
IIS 3 a 20 2 0.54 0.0001 19.698 20 0.9 2 0 0.9 0.7083 
120 3 6 22 6 1.65 0.0001 8.802 5 0.9 2 0 1 1 
121 3 e 38 1 4.95 0 17.583 19 0.9 2 0 0.7 06027 

122 3 6 43 8 1.29 0.0001 0.311 0 0.9 2 0 0.5 0 
123 3 6 41 2 1.8 0.0001 25.941 28 0.9 2 0 0.9 0.6636 
124 3 e 50 5 1.99 0.0001 1.804 2 0.9 2 0 1 0.7273 
129 3 e 77 5 1.81 0.0001 13.908 15 0.9 2 0 1 0.3649 
128 3 7 37 1 1.48 0.0018 22.573 22 1.09 8 0.7 0.6848 
127 3 7 28 6 4.01 0.0013 5.75 7 1.09 8 1 0.7345 
128 3 7 35 9 1.79 0.8596 0.0015 0.841 0 1.09 8 1 1 
129 3 7 36 2 1.79 08598 0.0013 36.882 36 1.09 8 0.9 0.8025 
130 3 7 39 2 1.79 0.8598 0.0013 82.048 81 1.09 8 0.9 0.6594 
131 3 7 40 8 1.79 0.8596 0.0019 2.349 2 1.09 8 0.5 0.4762 
132 3 7 48 2 1.79 0.8598 0.0016 16.937 17 1.09 8 0.9 0.6341 
133 3 7 12 4 1.71 0.8596 0.0012 6.7 6 1.09 8 1 0.9024 
134 3 7 33 9 0.9 0.8596 0.0023 4.028 2 1.09 8 1 1 
139 3 7 54 6 0.9 0.8598 0.0013 2.902 0 1.09 8 1 1 
138 3 7 60 2 6.83 0.9502 0.0019 2.884 4 1.09 8 0.9 0.6687 
137 3 7 84 2 9.5 0.9502 0.002 1.829 1 1.09 8 0.9 0.7879 
139 3 7 66 2 9.5 0.9502 0.002 1.441 0 1.09 8 0.9 0.2892 
139 3 7 74 2 832 0.9502 0.0016 1.984 2 1.09 8 0.9 0.818 
140 3 7 79 10 271 0.9502 0.0017 3.937 3 1.09 6 0.8 0.7059 
141 3 8 25 2 0.95 1 o.oooe 33.798 0 1.29 7 7 0.9 0.5962 
142 3 8 51 5 1.75 1 0.0007 0.451 0 1.29 7 7 1 0.8 
143 3 6 73 8 0.95 1 0.0006 33.956 0 1.28 7 7 0.5 0.1883 
144 3 8 70 1 5.93 0.9502 0.0008 3.967 0 1.29 7 7 0.7 0.3253 
149 3 ,_                   8 53 10 3.57 1 0.0008 11.393 0 1.29 7 7 0.8 0.3478 
148 3 8 82 2 3.61 1 0.0006 6.857 0 1.29 7 0.9 0.25 
147 3 9 1 10 3.85 1 0.0007 56.557 57 1.39 9 0.8 0.7694 

'«¥ 3 9 18 2 0.88 1 0.0007 60.697 81 1.39 9 0.9 0.6591 
1*9 3 9 66 1 5.93 0.9502 0.0008 5.114 5 1.39 9 0.7 0.4206 
190 3 9 76 1 8.85 0S502 0.0008 0.085 0 1.39 9 0.7 0 
191 3 9 41 2 3.06 1 0.0006 45.105 44 1.39 9 0.9 0.8592 
132 3 9 49 5 3.4 1 0.0008 0.408 0 1.39 9 1 0.4 

193 3 10 15 2 0.71 1 0.0008 60.426 80 0.48 4 2 0.9 0.8936 
194 3 10 59 8 0.95 1 0.0008 1.747 4 0.48 4 2 0.5 0.4444 

159 3 10 17 1 6.85 0.9502 0.0008 9.685 6 0.48 4 2 0.7 0.3193 

158 4 1 19 1 1.86 0.7685 0.0021 213.47 214 1.48 8 0 1 1 
157 4 1 61 1 1.88 0.7665 0.0021 9 10 1.48 8 0 1 0.6519 

158 4 2 5 4 7.83 0.0016 0.006 0 0.6 4 0 1 1 

159 4 2 75 2 9.41 0.0021 0.162 0 0.8 4 0 1 0.1429 

160 4 2 73 8 7.54 0.0021 2.125 3 0.6 4 0 1 0.2255 
161 4 3 25 2 0.48 0 49.869 49 0.6 0 1 0.7244 

162 4 3 45 8 0.49 0 48.982 48 0.6 0 1 0.7333 

163 4 3 78 5 1.92 0 0.479 0 0.6 0 1 1 

184 4 3 23 7 0.96 0 15.987 18 0.6 0 1 1 

185 4 4 52 10 5.47 0.8185 0.0023 0.013 0 0.8 0 0.8 0 

188 4 4 7 4 9.39 0 0.004 0 0.6 0 1 0 
187 4 4 17 1 4.35 0.9502 0.0057 0.196 0 0.6 0 1 0.3133 

IM 4 6 20 2 0.54 0.0001 9.285 9 0.9 2 0 1 0.875 

169 4 6 38 1 4.95 0 26.818 26 0.9 2 0 1 0.7927 
170 4 e 59 8 0.95 0.0001 5.676 4 0.9 2 0 1 0.8889 
171 4 8 49 5 1.71 0.0001 0.228 1 0.9 2 0 1 0.8 

172 4 8 50 5 1.69 0.0001 0.502 0 0.9 2 0 1 0.7273 
173 4 6 77 5 1.81 0.0001 4.311 2 0.9 2 0 1 0.3514 
174 4 7 37 1 1.48 0.0017 42.047 41 1.09 8 1 0.9597 
179 4 7 26 6 4.01 0.0012 3.145 2 1.09 8 1 0.7168 
176 4 7 35 9 1.79 0.8596 0.0014 0.49 0 1.09 8 1 0.902 
177 4 7 36 2 1.79 0.8596 0.0012 15.594 16 1.09 8 1 0.9108 

178 4 7 40 8 1.79 0.6596 0.0018 7.596 4 1.09 8 1 0.5714 
179 4 7 46 2 1.79 0.8598 0.0015 8.987 11 1.09 8 1 0.8293 
180 4 7 52 10 1.71 0.8596 0.0019 0.074 0 1.09 8 0.8 0 
181 4 7 12 4 1.71 0.8596 O.O011 3.328 2 1.09 8 1 0.878 
162 4 7 33 9 0.87 0.8598 0.0015 1.34 2 1.09 8 1 1 
183 4 7 54 6 0.9 0.8596 0.0012 0.415 0 1.09 8 1 1 

184 4 7 38 1 8.31 1 0.0003 1.007 1 1.09 8 1 0.7927 
189 4 7 17 1 3.2 0.9502 0.0018 14.423 14 1.09 8 1 0.3825 
188 4 7 60 2 6.83 0.9502 0.0018 1.621 3 1.09 8 1 0.8519 
187 4 7 84 2 9.5 0.9502 0.0019 0.851 0 1.09 8 1 0.697 
168 4 7 68 2 9.5 0.9S02 0.0019 0.671 1 1.06 8 1 0.6154 

60 



P a R S T U V w X Y Z AA AB AC     1     AD 
99 0.25 0.2835 0.8 1 4 0 0 0 0 5 0 0 42.2 168.81   72135.1 
96 0.5 0.2835 0.8 82 19 0 1 0 0 102 0 -4 44.6 847.4 72082.5 
97 0.25 0.1331 0.8 247 79 4 0 2 0 332 0 -14 17 1445 74427.5 
96 0.25 0.1331 0.7 55 28 0 1 1 0 83 0 •5 34.5 931.5 75359 
99 0.5 0.0019 0.6 45 13 9 0 1 1 69 0 0 30.8 739.2 76098.2 
100 0.25 0.0019 0.8 48 15 1 0 0 0 64 0 0 41.2 659.2 76757.4 
101 0.125 0.1331 0.6 216 143 1 0 0 0 360, 6 5 21 3024 79761.4 
102 0.5 0.8321 0.7 0 146 2 0 1 0 149 49 19 33.8 5038.2 84817.6 
103 0.25 06321 0.8 3 0 0 0 0 0 3 0 0 22.7 0 84817.8 
104 0.5 0.2835 0.6 3 2 0 0 0 0 5 4 2 36 72 84889.6 
109 0 0.0019 0.8 2 7 0 0 1 0 10 1 1 15.1 120.8 85010.4 
106 0.25 0.1331 0.8 44 45 4 0 0 1 94 34 25 28.4 1420 86430.4 
107 0.5 0.1331 0.8 156 281 67 0 1 1 506 183 91 33.3 1165S 98085.4 
10» 0 0.0018 0.6 9 18 0 0 0 0 27 4 4 44.4 799.2 98884.8 
109 0 0.0019 0.8 0 9 0 0 1 0 10 3 3 7.8 78 98962.6 
1^0 0.25 0.8321 0.7 6 1 0 0 0 0 7 0 0 43.9 43.9 99008.5 
111 0.25 0.0185 0.9 59 90 7 0 0 0 156 20 19 25.1 2434.7 101441.2 
112 0.5 0.2835 0.8 23 22 0 0 0 0 45 11 7 344 758.8 102198 
113 0.25 0.011 0.8 0 22 2 0 0 0 24 3 3 32.7 784.6 102982.8 
114 0.5 0.0028 0.9 15 18 20 0 1 0 52 18 17 34.3 1289.1 104251.9 
119 0.25 0.0165 0.8 3 19 2 0 0 0 24 7 7 13.2 277.2 104529.1 
116 0 0.0019 0.6 2 0 0 0 0 0 2 0 0 43.8 0 104529.1 
117 0 0.0019 0.8 9 0 0 0 0 0 9 0 0 10.1 0 104529.1 
116 0 0.0019 0.8 2 8 0 0 0 0 10 0 0 10.1 80.8 104809.9 
119 0.25 0.0689 0.8 7 13 4 0 0 0 24 11 7 36.3 617.1 105227 
120 0.5 0.6321 0.7 0 149 0 0 0 0 149 4 0 28.3 3918.7 109145.7 
121 0 0.0019 0.9 207 311 0 0 3 0 521 79 79 33.3 10458.2 119801.9 
122 0.25 0.0185 0.8 2 0 0 0 0 0 2 0 0 5.6 0 119801.8 
123 0.25 0.0028 09 184 288 75 0 0 0 547 43 41 13.2 4791.6 124393.5 
124 0.5 0.2835 0.6 3 7 0 0 1 0 11 3 2 199 159.2 124552.7 
129 0.25 0.0328 0.6 94 49 5 0 0 0 148 15 13 21.6 1186.4 125719.1 
128 0.5 0.0019 0.7 47 57 45 0 0 0 149 24 22 55 S610 131329.1 
127 0.5 0.0852 0.8 30 74 8 0 0 1 113 16 2 14.1 1170.3 132499.4 
126 0.25 0.0055 0.8 0 35 16 0 0 0 51 0 0 41.6 2121.8 134821 
128 0.25 0.0165 0.9 31 98 27 0 1 0 157 41 32 11.4 1438.4 139057.4 
130 0.125 0.8321 0.7 94 177 4 0 0 1 276 86 81 10.5 1911 137988.4 
131 0.5 0.0028 0.9 11 8 4 0 0 0 21 4 3 15.2 152 138120.4 
132 0.5 0.2835 0.8 15 25 1 0 0 0 41 16 8 24.4 634.4 138754.8 
133 0.5 0.011 0.9 8 47 26 0 1 0 82 7 2 2.2 162.8 138917.8 
134 0.5 0.0019 0.6 0 29 26 0 0 0 55 2 0 34 1870 140787.8 
139 0 0.0019 0.8 0 11 0 0 0 0 11 0 0 40.3 443.3 141230.9 
136 0.5 0.1331 0.8 9 14 4 0 0 0 27 14 8 54.6 9828 142213.7 
137 0.25 0.1331 0.7 6 22 2 1 1 1 33 9 7 45.6 1185.6 143399.3 
136 0.25 0.1331 0.7 19 7 0 0 0 0 26 0 0 50.9 358.3 143755.6 
136 0.25 0.6321 0.7 6 11 2 2 0 0 21 6 2 27.1 3523 144107.9 
14C 0.25 0.011 0.6 5 8 2 0 2 0 17 6 8 43.8 525.6 144633.5 
141 0.25 0.0165 0.9 63 90 3 0 0 0 156 0 15 25.1 2334.3 148967.8 
142 0.25 0.2835 0.6 1 4 0 0 0 0 5 0 0 32.7 130.8 147098.6 
143 0.5 0.2835 0.8 82 19 0 1 0 0 102 0 0 50.1 951.9 148050.5 
144 0.25 0.1331 0.7 55 26 0 1 1 0 83 0 0 50.8 1374.3 149424.8 
149 0.5 0.0019 0.8 45 13 9 0 1 1 89 0 0 16.3 391.2 149816 
146 0.25 0.0019 0.8 48 15 1 0 0 0 84 0 0 50.9 814.4 150630.4 
147 0.125 0.1331 0.6 83 263 6 0 8 0 360 138 133 20.4 5650.8 156281.2 
148 0.5 0.1331 0.8 30 43 15 0 0 0 88 44j 36 38.8 2238.8 158520 
149 0.25 0.1331 0.7 82 41 4 0 0 0 107 12 10 43.9 1975.5 160495.5 
190 0.25 0.6321 0.8 3 0 0 0 0 0 3 0 0 27.1 0 160495.5 
191 0.25 0.0028 0.9 77 371 98 0 0 1 547 110 148 13.2 8204 196699.5 
192 0.5 0.2835 0.8 3 2 0 0 0 0 5 0 0 19.9 39.8 168739.3 
193 0.25 0.1331 0.8 10 80 4 0 0 0 94 39 34 38.2 3208.8 169948.1 
194 0 0.0019 0.8 5 4 0 0 0 0 9 2 2 7.2 28.8 169976.9 
199 0.25 0.1331 0.8 226 102 3 0 0 1 332 27 21 33.3 3529.8 173506.7 
196 0.5 0.1331 0.8 0 429 73 0 3 1 508 255 158 33.3 16849.8 190356.5 
197 0 0.0019 0.6 4 22 0 0 1 0 27 5 5 2.4 55.2 190411.7 
196 0 0.0019 0.8 0 9 0 0 1 0 10 0 0 7.8 78 190489.7 
19S 0.25 0.6321 0.7 6 1 0 0 0 0 7 0 0 43.9 43.9 190533.8 
180 0.5 0.2835 0.8 79 23 0 0 0 0 102 8 4 50.1 1152.3 181685.8 
161 0.25 0.0165 0.9 43 103 10 0 0 0 158 20 20 25.1 2838.3 194522.2 
162 0.5 0.2835 0.8 12 30 3 0 0 0 45 18 11 34.4 1135.2 185657.4 
183 0.25 0.011 0.6 0 22 2 0 0 0 24 0 0 32.7 784.8 198442.2 
164 0.5 0.0028 0.9 0 24 27 0 0 1 52 15 15 34.3 1783.8 188225.8 
189 0 0.0019 0.6 2 0 0 0 0 0 2 0 0 43.8 0 19S22S.8 
166 0 0.0010 0.8 9 0 0 0 0 0 9 0 0 10.1 0 198225.8 
187 0.25 0.1331 0.8 228 102 1 0 0 1 332 0 -2 33.3 3463.2 201689 
166 0.25 0.0689 0.8 3 19 2 0 0 0 24 7 4 36.3 782.3 202451.3 
189 0 0.0019 0.9 108 412 0 0 1 0 521 99 99 33.3 13752.9 216204.2 
170 0 0.0019 0.8 1 8 0 0 0 0 9 4 4 7.2 57.6 216261.8 
171 0.5 0.2835 0.6 1 3 0 0 1 0 5 2 2 19.8 796 218341.4 
172 0.5 0.2835 0.6 3 7 0 0 1 0 11 0 0 19.9 159.2 218500.6 
173 0.25 0.0328 0.6 96 50 2 0 0 0 148 2 -2 21.6 1123.2 217623.8 
174 0.5 0.0019 0.7 6 84 57 0 1 1 149 44 41 55 7895 225488.8 
179 0.5 0.0952 08 32 76 5 0 0 0 113 4 -2 14.1 1142.1 228630.9 
17« 0.25 0.0055 0.8 6 35 11 0 0 0 51 0 -5 41.6 1913.6 228504.5 
177 0.25 0.0185 0.9 14 118 27 0 0 0 157 21 17 11.4 1630.2 230174.7 
178] 0.5 0.0028 0.9 9 8 4 0 0 0 21 3 2 15.2 182.4 230357.1 
17» 0.5 0.2835 08 7 33 1 0 0 0 41 16 8 24.4 829.6 231188.7 
18C 0 0.0019 o.e 2 C 0 0 0 0 2 0 0 43.8 0 231186.7 
181 0.5 0.011 0.9 10 48 23 0 0 1 82 2 -2 2.2 158.4 231345.1 
182 0.5 0.0019 0.6 0 30 25 0 0 0 55 1 0 34 1870 233215.1 

1» 0 0.0019 o.e c 11 0 c 0 0 11 0 0 40.3 443.3 233658.4 
184 0 0.0019 0.9 108 413 0 0 0 0 521 0 99 33.3 137529 247411.3 
18! 0.25 0.1331 0.8 205 124 3 0 0 0 332 29 21 33.3 4229.1 251640.4 
1K 0.5 0.1331 0.8 3 18 4 1 0 1 27 14 5 54.6 1255.8 252898.2 
187 0.25 0.1331 0.7 8 22 0 2 1 0 33 0 -3 45.6 1048.8 253945 
18t 0.25 0.1331 0.7 10 11 2 0 3 0 26 9 9 50.9 814.4 254759.4 

61 



A B C D E F O H 1 J K L M N 0 
18» 4 7 70 1 8.84 0.9502 0.0018 4.65 5 1.09 8 1 0.5181 
IM 4 7 74 2 6.32 0.9502 0.0015 0.791 1 1.09 8 1 0.619 
191 4 7 76 1 3.2 0.9502 0.0018 0.438 2 1.09 8 1 0.3333 
192 4 7 79 10 271 0.9502 O.0O16 0.662 1 1.09 8 1 0.8 0.7059 
193 4 6 1 10 3.85 0.O007 9.148 0 1.29 7 7 0.8 0.7528 
194 4 8 18 2 0.88 0.0007 30.401 0 1.29 7 7 0.5341 
19S 4 8 22 8 1.65 0.0005 2.045 0 1.29 7 7 1 
1SS 4 8 51 5 1.75 0.0007 0.078 0 1.29 7 7 0.8 
19/ 4 8 73 8 0.95 0.0006 78.617 0 1.29 7 7 0.2255 
1M 4 8 17 1 8.85 0.9502 0.0008 11.721 0 1.29 7 7 0.3735 
19S 4 8 41 2 3.06 0.0006 22.271 0 1.29 7j 7 0.8537 
200 4 8 53 10 3.57 0.0008 1.782 0 1.29 7 7 0.8 0.3188 
201 4 8 62 2 3.61 0.0008 1.909 0 1.29 7 7 0.25 
202 4 9 43 8 1.29 0.0008 0.971 1 1.39 9 1 0.5 
203 4 9 68 1 5.93 0.9502 0.0008 8.938 8 1.39 9 1 0.5981 
201 4 10 15 2 0.71 0.0008 22.242 20 0.48 4 2 0.9787 
20! 4 10 38 1 4.93 0.0006 6.536 5 0.48 4 2 0.6196 
201 5 1 19 1 1.88 0.7665 0.0021 73.669 69 1.48 8 0 1 
207 5 1 61 1 1.86 0.7665 00021 1.288 1 1.48 8 0 0.8519 
208 5 2 5 4 7.83 0.0016 0 0 0.8 4 0 1 
20S 5 3 23 7 0.98, 0 1.313 1 0.6 0 1 
210 5 3 25 2 0.38 0 15.176 16 0.6 0 0.7308 
211 5 3 45 8 0.43 0 52.749 52 0.6 0 0.8667 
212 5 3 41 2 0.88 0 8.892 10 0.6 0 0.8556 
213 5 3 42 2 0.78 0 6.149 4 0.6 0 1 
214 5 3 78 5 0.98 0 0.513 0 0.6 0 1 
219 5 3 75 2 206 0 0.101 1 0.8 0 0.4286 
21« 5 3 73 8 7.57 0 0.584 0 0.6 0 0.2255 
217 5 4 52 10 5.47 0.8185 0.0023 0.133 0 0.6 0 0 
216 5 4 7 4 9.39 0 0 0 0.6 0 0 
219 5 6 49 5 1.71 0.0001 0.083 0 0.9 2 0 0.6 
220 5 S 50 5 1.69 0.0001 0.14 0 0.9 2 0 0.7273 
221 5 6 77 5 1.81 0.0001 2.285 2 0.9 2 0 0.3784 
222 5 7 37 1 1.48 0.0017 5.149 4 1.09 8 0.96S4 
223 5 7 26 6 4.01 0.0012 1.729 2 1.09 8 0.7257 
224 5 7 35 9 1.79 0.8596 0.0014 0.458 0 1.09 8 0.902 
229 5 7 40 8 1.79 0.8598 0.0018 0.428 0 1.09 6 0.5238 
22« 5 7 46 2 1.79 0.8596 0.0015 2.53 5 1.09 8 0.8537 
227 5 7 12 4 1.71 0.8596 0.0011 3.027 1 1.09 8 0.8171 
228 5 7 33 9 0.9 0.8596 0.0022 0.896 0 1.09 8 1 
229 5 7 54 6 0.9 0.8596 0.0012 0.059 0 1.09 8 1 
230 5 7 38 1 6.31 1 0.0003 0.734 1 1.09 8 0.8311 
231 5 7 60 2 8.83 09502 0.0018 0.637 0 1.09 8 0.7037 
232 5 7 64 2 9.S 0.9502 0.0019 0.172 0 1.09 8 0.897 
233 5 7 86 1 8.84 09502 0.0018 1.098 0 1.09 8 0.5701 
234 5 7 88 2 9.5 0.9502 0.0019 0.138 0 1.09 8 0.5385 
235 5 7 70 1 8.84 0.9502 0.0018 0.85 1 1.09 8 0.5181 
238 5 7 74 2 6.32 0.9502 0.0015 0.108 0 1.09 8 0.619 
237 5 7 79 10 2.71 0.9502 0.0016 2.085 4 1.09 8 0.9412 
230 5 B 1 10 3.85 0.0007 28.394 0 1.29 7 7 0.7528 
239 5 8 43 8 1.29 0.0008 0.111 0 1.29 7 7 0.5 
240 5 S 51 5 1.75 0.0007 0.013 0 1.29 7 7 0.8 
241 5 8 73 8 0.95 0.0008 21.788 0 1.29 7 7 0.2255 
242 5 8 S3 10 3.57 0.0008 5.949 0 1.29 7 7 0.3188 
243 5 9 22 6 1.65 0.0005 0.475 0 1.39 9 1 1 
244 5 9 17 1 8.85 0.9502 0.0008 291 2 1.39 9 1 0.3976 
245 5 9 76 1 8.85 0.9502 0.0008 0.018 0 1.39 9 1 0.3333 
24S 5 9 82 2 3.61 1 0.00D6 0.199 1 1.39 9 1 0.2989 
247 
243 Period Tarnet Pdiff 
249 1 0.0139 
250 2 0.4 
251 3 0.75 
252 4 08071 
253 5 0.05 
254 8 0.05 
259 7 0.75 
'296 8 0.0887 
257 9 025 
250 10 0.75 
259 11 0.75 
290 12 0.1159 
281 13 0.25 
282 14 0 
283 15 0.084 
284 ie 0 
289 17 0.1018 
288 18 0.0091 
287 19 0.4 
288 20 0.1417 
289 21 0.35 
270 22 0.1275 
271 23 0.0077 
272 24 0.2 
273 25 00038 
274 26 0.4071 
275 27 0.0088 
278 28 0.8884 
277 29 0 
278 30 0.0537 
279 31 0.25 
280 32 0.35 
281 33 0.0727 
202 34 0.381 

62 



P O R S T U V w X Y Z AA AB AC AD 

189 0.25 0.1331 0.7 40 38 0 0 5 0 83 17 16 50.9 21887 256948.1 
190 0.25 0.8321 0.7 8 13 0 0 0 0 21 0 0 27.1 352.3 257300.4 
191 0.25 0.8321 0.8 2 1 0 0 0 0 3 3 1 27.1 27.1 257327.5 

I92 0.25 0.011 0.6 5 10 2 0 0 0 17 0 0 43.8 525.8 2S7853.1 
193 0.125 0.1331 0.6 89 263 0 0 8 0 360 0 -8 20.4 5528.4 283381.5 
194 0.5 0.1331 0.6 41 43 4 0 0 0 88 0 -11 36.6 1814.2 285195.7 

193 0.5 0.8321 0.7 0 149 0 0 0 0 149 0 0 26.3 3918.7 289114.4 
196 0.25 0.2B35 0.6 1 4 0 0 0 0 5 0 0 32.7 130.8 28B245.2 
197 0.5 0.2835 0.8 79 23 0 0 0 0 102 0 4 50.1 1152.3 270397.5 
199 0.25 0.1331 0.8 208 124 0 0 0 0 332 0 18 33.3 4129.2 274528.7 
199 0.25 0.0028 0.9 80 371 95 0 0 1 547 0 -3 13.2 6184.4 280691.1 
200 0.5 0.0019 0.6 46 13 8 1 1 0 89 0 -2 16.3 358.6 281049.7 
201 0.25 0.0019 0.8 48 15 1 0 0 0 84 0 0 50.9 814.4 281884.1 
202 0.25 0.0165 0.8 1 0 0 0 1 0 2 1 1 5.8 5.6 281869.7 
203 0.25 0.1331 0.7 43 59 3 0 2 0 107 23 19 43.9 2809.6 284679.3 
204 0.25 0.1331 0.8 2 91 1 0 0 0 »4 13 8 38.2 3514.4 288193.7 
203 0 0.0019 0.9 94 427 0 0 0 0 521 14 113 33.3 14219.1 302412.8 
206 0.5 0.1331 0.8 0 470 36 0 0 0 506 76 0 24.3 12295.8 314708.8 
207 0 0.0019 0.6 4 23 0 0 0 0 27 0 0 32.4 745.2 315453.8 
206 0 0.0019 0.6 0 e 0 0 1 0 10 0 0 17.8 178 315831.8 

209 0.5 0.0028 0.9 0 25 27 0 0 0 52 0 0 50.1 2605.2 318237 
210 0.25 0.0185 o.e 42 108 6 0 0 0 158 5 1 27 3078 321315 

211 0.5 0.2835 0.8 6 37 2 0 0 0 45 15 6 39.1 1524.9 322839.9 

2M 0.25 0.0028 0.9 79 374 94 0 0 0 547 3 1 31 14508 337347.9 
213 0.25 0.0185 0.8 0 20 4 0 0 0 24 3 3 31 744 33S091.9 
214 0.25 0.011 0.8 0 22 2 0 0 0 24 0 0 38.9 885.8 338977.5 
215 0.25 0.8321 0.7 4 2 0 0 1 0 7 2 2 29.6 88.8 339066.3 
216 0.5 0.2835 0.8 79 23 0 0 0 0 102 0 0 63.7 1465.1 340531.4 
217 0 0.0019 0.6 2 0 0 0 0 0 2 0 0 45 0 340531.4 
210 0 0.0019 0.8 9 0 0 0 0 0 9 0 0 12.2 0 340531.4 
219 0.5 0.2835 0.6 1 3 0 0 1 0 5 0 0 22 88 340B19.4 
220 0.5 0.2835 0.6 3 7 0 0 1 0 11 0 0 22 178 340795.4 
221 0.25 0.0328 0.6 92 51 4 0 1 0 148 4 4 28.8 1812.8 342408.2 
222 0.5 0.0019 0.7 5 86 56 0 0 0 149 2 1 37.7 5428.8 347837 
223 0.5 0.0952 0.8 31 79 3 0 0 0 113 4 1 4.4 360.8 348197.8 
224 0.25 0.0055 0.6 5 35 11 0 0 0 51 0 0 41.9 1927.4 350125.2 
229 0.5 0.0028 0.9 10 8 3 0 0 0 21 0 -1 38.4 422.4 350547.6 
228 0.5 0.2835 0.6 6 34 0 0 1 0 41 4 1 42 1470 352017.6 
227 0.5 0.011 0.9 14 48 19 1 0 0 82 0 -5 2.1 140.7 352158.3 
228 0.5 0.0019 0.6 0 30 25 0 0 0 55 0 0 49.8 2739 354897.3 
229 0 0.0019 0.6 0 11 0 0 0 0 11 0 0 48.5 533.5 355430.8 
230 0 0.0019 0.6 88 432 0 0 1 0 521 6 6 24.3 10521.9 365952.7 
231 0.5 0.1331 0.8 6 18 1 2 0 0 27 0 -4 34.9 663.1 366615.8 
232 0.25 0.1331 0.7 8 22 0 2 1 0 33 0 0 3B.4 837.2 387453 
233 0.25 0.1331 0.7 46 59 0 0 2 0 107 0 -3 29.8 1805.6 389258.6 
234 0.25 0.1331 0.7 12 11 0 0 3 0 26 0 -2 39.1 547.4 388806 
239 0.25 0.1331 0.7 40 43 0 0 0 0 83 0 0 39.1 1681.3 371487.3 
238 0.25 0.6321 0.7 6 13 0 0 0 0 21 0 0 16 208 371695.3 
237 0.25 0.011 0.8 1 13 3 0 0 0 17 4 4 45 720 372415.3 
231 0.125 0.1331 0.8 89 283 0 0 8 0 360 0 0 12 3252 375867.3 
239 0.25 0.0185 0.8 1 0 0 0 1 0 2 0 0 22.7 22.7 375690 
240 0.25 0.2835 0.8 1 4 0 0 0 0 5 0 0 36.9 147.8 375837.6 
241 0.5 0.2835 0.8 79 23 0 0 0 0 102 0 0 63.7 1465.1 377302.7 
242 0.5 0.0019 0.6 46 13 8 1 1 0 89 0 0 26.2 576.4 377879.1 
243 0.5 0.8321 0.7 0 149 0 0 0 0 149 0 0 24.6 3865.4 381544.5 
244 0.25 0.1331 0.8 200 131 1 0 0 0 332 9 6 24.3 3207.8 3847521 
24S 0.25 0.6321 0.8 2 1 0 0 0 0 3 0 0 18 16 364788.1 
24« 0.25 0.0019 0.8 45 IB 1 0 0 0 64 3 3 83.2 1200.8 385938.9 
247 
240 
249 
290 
231 
232 
293 
251 
255 
230 
237 
250 
259 
280 
261 
262 
263 
281 
2« 
2« 
267 
268 
289 
270 
271 
272 
275 
274 
275 
27( 
271 

V* 
27! 
290 
281 
28S 

63 



A B C 0 E F 0 H          1       . J K       1       L M N O 
2K ■ 35 I 
2»! 1 36 0.0061 
28! • 37 o.oa 
2» 1 38 0.067S 
IS 39 0.0022 
281 1 40 0.0595 
2« 1 41 0.01 
291 - 42 0.0167 
2» 43 0.25 
293 f 0.25 
2K ' 45 0.0056 

2* ; 45 0.0328 
29! 47 0.75 
291 45 0.75 
29! 49 0.8 
291 1 50 0.5273 
2» 1 51 0 
30C 1 52 0.4 
SO- 53 0.0522 
30! 54 1 
303 55 1 301 56 1 
30! 57 1 
306 58 0 
307 59 0.0278 
301 80 0.35 
30! 61 0.4 
3« 62 0.1 
311 63 0 
31! 64 0.0167 
313 85 0 
314 56 0.129 
319 67 0 
31« 68 0.0423 
317 69 0 
311 70 0.0145 
31S 71 0.75 
320 72 0.75 
321 73 0.0245 
322 74 0.35 
323 75 0.2071 
32« 76 0.4 
329 77 0.773 
326 78 0.2583 
327 79 0.0471 
326 2 1 0 
321 2 2 0.4 
331 2 3 0.774 
331 2 4 0.8071 
332 2 5 0.25 
333 2 8 015 
334 2 7 0.95 
335 2 8 0.2167 
336 2 9 0.35 
337 2 10 0.95 
338 2 11 0.95 
339 2 12 0.072 
340 2 13 0.35 
341 2 14 0 
342 2 15 0.0681 
343 2 16 0 

?** 2 17 0.294 
345 2 18 0.35 
346 2 19 0.0381 
347 2 20 0.1833 
348 2 21 0.6 
348 2 22 0 
330 2 23 0.0154 
351 2 24 0.4 
352 2 25 0.1 
353 2 25 0.2832 
354 2 27 0.1068 
355 2 28 0.8884 
356 2 29 0 
357 2 30 0.3037 
356 2 31 0.35 
359 2 32 0.8 
360 2 33 0 
361 2 34 0.381 
362 2 35 0 
363 2 36 0.0013 
364 2 37 0.0131 
365 2 38 0.0989 
366 2 39 0.2341 
367 2 40 0.0167 
368 2 41 0.0113 
363 2 42 00187 
370 2 43 0.35 
371 2 44 0.35 
372 2 45 0.0187 
373 2 48|             0.1122 
374 2 47 0.95 
375 2 48 0.95 
376 2 49 0.55 

64 



A B C 0 E F e H 1 J K L M N 0 
377 2 50 0.4045 
378 2 51 0.15 
379 2 52 0.4 
380 2 53 0.0522 
381 2 54 0 
382 2 55 1 
383 2 58 1 
384 2 57 1 
383 2 58 0 
38« 2 59 0.1278 
387 2 60 0.22B8 
388 2 81 0.0315 
389 2 82 0.35 
»90 2 83 0 
391 2 84 0.0242 
392 2 85 0 
393 2 66 0.2229 
394 2 67 0 
393 2 88 0.3308 
396 2 69 0 
397 2 70 0.2247 
396 2 71 0.95 
39S 2 72 0.95 
400 2 73 0.1637 
401 2 74 0.0762 
402 2 75 0.4571 
403 2 76 0.55 
404 2 77 0.673 
409 2 78 0.075 
40« 2 79 0.0471 
407 3 1 0.0306 
40« 3 2 0.8 
409 3 3 0.824 
410 3 4 0.8571 
411 3 5 0 
412 3 8 0.2 
413 3 7 1 
414 3 8 0.3687 
413 3 9 05 
41« 3 10 1 
417 3 11 1 
418 3 12 0.0976 
419 3 13 0.5 
420 3 14 0 
421 3 15 0.0064 

**? 3 16 0 
423 3 17 0.3807 
424 3 18 0.2409 
423 3 19 0.0083 
426 3 20 0.1917 
427 3 21 0.9 
428 3 22 0 
429 3 23 0.0385 
430 3 24 0.75 
431 3 25 0.3038 
432 3 26 0.2655 
433 3 27 0.2568 
434 3 28 0.9384 
435 3 29 0 
43« 3 30 0.6037 
437 3 31 0.5 
438 3 32 0.9 
439 3 33 0 
440 3 34 0.381 
441 3 35 0 
442 3 36 0.0S75 
443 3 37 0.0154 
444 3 33 0.0973 
449 3 39 0.2406 
446 3 40 0.0238 
447 3 41 0.0408 
448 3 42 0.025 
449 3 43 0.5 
490 3 44 0.5 
491 3 45 0.0111 
492 3 46 0.2858 
493 3 47 1 
494 3 48 1 
499 3 49 0.6 
45« 3 50 0.2727 
497 3 51 0.2 
458 3 52 0.8 
499 3 53 0.4522 
4S0 3 54 0 
481 3 55 1 
482 3 56 1 
483 3 57 1 
4(4 3 58 0 
469 3 59 0.0558 
46« 3 80 0.2333 
4S7 3 61 L            0.0333 
468 3 62 0.65 
489 3 63 0 
470 3 64 0.1121 

65 



A a C D E F O H 1 J K L M N O 
471 3 85 0 

«« 3 ae 0.2794 
473 3 67 0 
474 3 68 0.8308 
47S 3 89 0 
476 3 70 0.3747 
477 3 71 1 
47t 3 72 1 
479 3 73 0.3137 
4M 3 74 0.281 
481 3 75 0.7571 
482 3 78 0.7 
483 3 77 0.6351 
484 3 78 0 
489 3 78 0.0941 
488 4 1 0.0472 
481 4 2 0.8 
488 4 3 0.824 
489 4 4 0.8571 
490 4 5 0 
491 4 6 0.2 
492 4 7 1 
493 4 8 0.6867 
494 4 9 1 
4»! 4 10 1 
49« 4 11 1 
497 4 12 0.122 
4M 4 13 1 
499 4 14 0 
90C 4 15 0.0213 
SOI 4 16 0 
902 4 17 0.6265 
903 4 18 0.4659 
9« 4 19 0 
908 4 20 0.125 
90S 4 21 1 
907 4 22 0 
908 4 23 0 
909 4 24 1 
910 4 25 0.2756 
911 4 28 0.2832 
912 4 27 0.7568 
913 4 28 0.9384 
914 4 29 0 
919 4 30 0.7037 
918 4 31 1 
917 4 32 1 
918 4 33 0 
919 4 34 0.381 
920 4 35 0.098 
921 4 36 0.0892 
922 4 37 0.0403 
923 4 38 0.1804 
924 4 39 0.3406 
929 4 40 0.4286 
928 4 41 0.1463 
927 4 42 0.125 
928 4 43 0.5 
929 4 44 1 
030 4 45 0.2867 
931 4 46 0.1707 
932 4 47 1 
933 4 48 1 
934 4 49 0.2 
933 4 50 0.2727 
S3S 4 51 0.2 
937 4 52 0.8 
93B 4 53 0.4812 
939 4 54 0 
940 4 55 1 
941 4 58 1 
942 4 57 1 
843 4 58 0 
944 4 59 0.1111 
949 4 60 0.1481 
S46 4 61 0.1481 
»47 4 62 0.75 
948 4 63 0 
948 4 64 0.303 
930 4 65 0 
991 4 66 0.4019 
992 4 67 0 
993 4 88 0.3848 
994 4 69 0 
999 4 70 0.4819 
996 4 71 1 
897 4 72 1 
998 4 73 0.7745 
999 4 74 0.381 
960 4 75 0.8571 
981 4 76 0.6667 
982 4 77 0.6486 
963 4 78 0 
964 4 79 0.0941 

66 



A B C D E T O H 1 J K L M H O 
969 5 1 0.2472 
966 5 2 1 
967 5 3 0.824 
968 5 4 0.8571 
969 5 5 0 
970 5 e 0.2 
971 5 7 1 
972 5 8 0.6687 
573 5 9 1 
S74 5 10 1 
979 5 11 1 
S76 5 12 0.1829 
977 5 13 1 
976 5 14 0 
979 5 15 0.0213 
960 5 16 0 
961 5 17 0.6024 
962 5 18 0.4859 
983 5 19 0 
984 5 20 0.125 
989 5 21 1 
986 5 22 0 
987 5 23 0 
988 5 24 1 
589 5 25 0.2692 
390 5 26 0.2743 
591 5 27 0.7568 
982 5 28 0.S384 
993 5 29 0 
994 5 30 0.7037 
995 5 31 1 
996 5 32 1 
997 5 33 0 
596 5 34 0.381 
599 5 35 0.098 
600 5 36 0.0892 
601 5 37 0.0338 

■P S 36 0.1689 
603 5 39 0.3406 
604 5 40 0.4762 
609 5 41 0.1444 
(06 5 42 0 
607 5 43 0.5 
606 5 44 1 
609 5 45 01333 
610 S 46 0.1483 
611 5 47 1 
612 5 48 1 
613 5 49 0.2 
614 5 50 0.2727 
619 5 51 0.2 
616 5 52 1 
617 5 53 0.6812 
618 5 54 0 
619 5 55 1 
620 5 56 1 
621 5 57 1 
622 5 58 0 
623 5 59 0.1111 
624 5 60 0.2963 
629 5 61 0.1481 
626 5 62 0.7031 
627 5 63 0 
628 5 64 0.303 
629 5 65 0 
630 5 68 0.4299 
(31 5 67 0 
632 5 68 0.4615 
633 5 69 0 
634 5 70 0.4819 
639 5 71 1 
639 5 72 1 
637 5 73 0.7745 
638 5 74 0.381 
639 5 75 0.5714 
640 5 78 0.6667 
641 5 77 0.6218 
642 5 78 0 
643 5 79 0.0588 
644 
649 Replication: 1 ObjFcnVal: 3470171.508 
646 Replication: 2 ObjFcnVal: 4171083.232 
647 Replication: 3 ObjFcnVal: 4140896.391 
649 Replication: 4 ObjFcnVal: 4083821.498 
649 Replication: 5 ObjFcnVal: 4073270.511 
690 Replication: 6 ObiFcnVal: 4086518.933 
651 Replication: 7 ObiFcnVal: 4123566.862 
652 Replication: 8 ObjFcnVal: 4064588.446 
653 Replication: 9 ObjFcnVal: 4085580.472 
654 Replication: 10 ObjFcnVal: 4105893.224 
659 Replication: 11 ObiFcnVal: 3997702.962 
656 Replication: 12 ObiFcnVal: 4163290.136 
657 Replication: 13 ObjFcnVal: 4081784.924 
688 Replication: 14 ObiFcnVal: 4114968.924 

67 



A B C D E F o H 1 J K L M N O 
6SS Replication 15 ObjFcnVa 3979167.878 
680 Replication 16 ObjFcnVa 4133906.797 
661 Replication 17 ObjFcnVa 4059437.72 
662 Replication 18 ObjFcnVa 4094040.811 
SS3 Replication 1S ObjFcnVa 4144163.92 
664 Replication 20 ObjFcnVa 4114547.027 
669 Replication 21 ObjFcnVa 4033955.253 
666 Replication 22 ObjFcnVa 4118109.15 
6S7 Replication 23 ObjFcnVa 4074865.556 
666 Replication 24 ObjFcnVa 4104057.719 
669 Replication 25 ObjFcnVa 3218202.77 
670 Replication 26 ObjFcnVa 4119873.814 
671 Replication 27 ObjFcnVa 4055855.809 
672 Replication. 28 ObjFcnVa 4110403.775 
67: Replication 29 ObjFcnVa 4122138.388 
674 Replication. 30 ObjFcnVa 3906769.952 
67! Replication 31 ObjFcnVa 4023204 893 
67* Replication. 32 ObjFcnVa 3986794.499 
677 Replication- 33 ObjFcnVa 4054583.331 
678 Replication: 34 ObjFcnVal 4038997.949 
879 Replication: 35 ObjFcnVa 4068611.828 
681 Replication: 36 ObjFcnVa 4043854.135 
88- Replication: 37 ObjFcnVa 4060650.303 
SB Replication: 38 ObjFcnVa 4093528.006 
8« Replication: 39 ObjFcnVa 4083010.418 
884 Replication: 40 ObjFcnVal 4065258.672 
689 Replication: 41 ObjFcnVa 4178756.029 
666 Replication: 42 ObjFcnVal 4047517.673 
687 Replication: 43 ObjFcnVal 4020402.83 
686 Replication: 44 ObjFcnVal 4082329.211 
ess Replication: 45 ObjFcnVal 4028317.318 
690 Replication: 46 ObjFcnVal 4083542.47 
691 Replication: 47 ObjFcnVal 4133253.865 
693 Replication: 48 ObjFcnVal 4057929.554 
693 Replication: 49 ObjFcnVal 4051689.295 
884 Replication: 50 ObjFcnVal 4031584.275 
699 Replication: 51 ObjFcnVa: 3938811.143 
89« Replication: 52 ObjFcnVal 4072785.844 
697 Replication: 53 ObjFcnVa! 4111118.07 
698 Replication: 54 ObjFcnVal 4099812.837 
699 Replication: 55 ObjFcnVal 4128358.631 
700 Replication: 58 ObjFcnVal 4156460.899 
701 Replication: 57 ObjFcnVal 4070882.067 
702 Replication: 58 ObjFcnVal 4094999.931 
703 Reptication: 59 ObjFcnVal 4159991.225 

"I Replication: 80 ObjFcnVal 4064475.711 
70S Replication: 61 ObjFcnVal 4116059.753 
TOE Replication: 62 ObjFcnVa! 4105091.889 
707 Replication: 83 ObjFcnVal 34687388 
706 Replication: 84 ObjFcnVal 4128833.698 
708 Replication: 65 ObjFcnVal 4193142.513 
710 Replication: 66 ObjFcnVal 4023805.586 
711 Replication: 67 ObjFcnVal 4098923.521 
712 Replication: 68 ObjFcnVal 4066261.463 
713 Replication: 69 ObjFcnVal 4070236.881 
714 Replication: 70 ObjFcnVal 4033956.162 
719 Replication: 71 ObjFcnVal 4078840.1 
716 Replication: 72 ObjFcnVal 4104199.369 
717 RepHcatton: 73 ObjFcnVal 3038527.9 
711 Replication: 74 ObjFcnVal 4083157.788 
719 Replication: 75 ObjFcnVal 4085759.857 
720 Replication: 76 ObjFcnVal 4051164.346 
721 Replication: 77 ObjFcnVal 4041732.83 
722 Replication: 78 ObjFcnVal 4070052.927 
723 RepHcabon: 79 ObjFcnVal 4081439.007 
724 Replication: 80 ObjFcnVal 4051679.999 
725 Replication: 81 ObjFcnVal 4127226.146 
726 Replication: 82 ObjFcnVal 4158445.212 
727 Replication: 83 ObjFcnVal 4150323.018 
729 Replication: 84 ObjFcnVal 4052817.272 

72? Replication: 85 ObjFcnVal 4007084.461 
730 Replication: 86 ObjFcnVal 3987224.724 
731 Replication: 87 ObjFcnVal 4112189.974 
732 Replication: 68 ObjFcnVal 4087670.314 
733 Replication: 89 ObjFcnVal 4095150.86 
734 Replication: 90 ObjFcnVal 4010501.23 
715 Replication: 91 ObjFcnVal 4152952.787 
738 Replication: 92 ObjFcnVal 4131853.078 
737 Replication: 93 ObjFcnVal 2818557.241 
739 Replication: 94 ObjFcnVal 4084504.196 
739 Replication: 95 ObjFcnVal 4063929.653 
740 Replication: 96 ObjFcnVal 4072446 
74*1 Replication: 97 ObjFcnVal 2999360.088 
742 Replication: SB ObjFcnVal 4027818.571 
743 Replication: 99 ObjFcnVal 4104539.545 
744 Replication: 100 ObjFcnVal 4012412651 
749 
749 
747 Number of Replications: 1000 
749 
749 Objective Function Value (v: weighted sum of TVD); 4010560.612 
750 
751 Standard Deviation: 245326.1224 

68 



LIST OF REFERENCES 

1. Yost, Kirk A., MAJ, USAF, The Time Strike Munitions Optimization Model, Naval Postgraduate 
School, Monterey, CA, January 1996. 

2. Devore, Jay L., Probability and Statistics for Engineering and the Sciences, Fourth Edition, Duxbury 
Press, 1995. 

69 



70 



INITIAL DISTRIBUTION LIST 

No. of copies 

1. Defense Technical Information Center 2 
8725 John J. Kingman Rd., STE 0944 
Ft. Belvoir, VA 22060-6218 

2. Dudley Knox Library 2 
Naval Postgraduate School 
411 Dyer Rd. 
Monterey, CA 93943-5101 

3. AFSAA/SAA/SAQ/SAMCI  
1570 Air Force Pentagon 
Washington, DC 20330-1570 

4. Undersea Warfare, Curriculum 525. 
Code 37, Root Hall, Room 103K 
Naval Postgraduate School 
Monterey, CA 93943-5002 

5. Professor Alan R. Washburn. 
Code OR/WS 
Naval Postgraduate School 
Monterey, CA 93943-5000 

Major Kirk A. Yost, USAF  
Doctoral Candidate, Department of Operations Research 
Naval Postgraduate School 
Monterey, CA 93943-5000 

Professor Arnold H. Buss  
Code OR/BU 
Naval Postgraduate School 
Monterey, CA 93943-5000 

71 


